
1 Canadian Association of Amateur Astronomers (CAAA)

2

Canadian Astronomy and
Astrophysics Olympiads
CAAO tutorial

Armin Hodaei
2023





Preface

This guide is intended for students who wish to participate in the Canadian
Astronomy and Astrophysics Olympiad (CAAO). It serves as an introductory-
level introduction to the Olympiad for interested students across Canada. Each
year, the highest-achieving CAAO students are selected to represent Team
Canada in the International Astronomy and Astrophysics Olympiad (IOAA),
and are provided with a training program to prepare them for the international
competition.

While this guide contains a great deal of information, we recommend that
students supplement their learning with other resources listed in the reference
section. The guide includes numerous practice problems designed to complement
students’ learning path. Additionally, we highly encourage students to solve
past CAAO problems available in a separate file.

To participate in the Canadian astronomy Olympiad, students should have
a solid foundation in high school-level physics and mathematics. However,
for the international Olympiads, students will need to develop an advanced
understanding of physics and mathematics beyond what is typically taught in
high school.

The International Astronomy and Astrophysics Olympiad (IOAA) is a
prestigious international competition for high school students. Each year, the
brightest students from around the world compete in this event, and Canada
has been participating in the IOAA since 2013.
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Resources

The Canadian Astronomy and Astrophysics Olympiad (CAAO) requires diligent
preparation by interested students, and the use of appropriate resources is critical
to success. Several textbooks have been identified as valuable resources in this
endeavor, including:

1. Foundations of Astrophysics, authored by Barbara Ryden

2. Fundamental Astronomy, written by Karttunen et al.

3. An Introduction to Modern Astrophysics, co-authored by Bradley Carroll
and Dale Ostlie

4. Astronomy Principles and Practice, by Archie E. Roy and David Clarke

5. Introduction to Cosmology, authored by Barbara Ryden

The first two textbooks are introductory level, while An Introduction to
Modern Astrophysics is suitable for students with a strong background in
physics and calculus. Students seeking comprehensive knowledge of spherical
astronomy are advised to reference Astronomy Principles and Practice.

Additionally, students are expected to possess a solid foundation in high
school-level physics and mathematics. Senior-level students are strongly
encouraged to deepen their understanding of these subjects by studying calculus.

Aspiring students may benefit from exploring more advanced IOAA-level
resources. The references used to compile this document have been included in
the reference section for this purpose.
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PART I

Introduction to CAAO





CHAPTER 1

Basic Concepts

1.1 Parallax

Measuring the intrinsic brightness of stars is linked with determining their
distances. On Earth, the distance to the peak of a remote mountain can be
determined by measuring that peak’s angular position from two observation
points separated by a known baseline distance. Simple trigonometry then
supplies the distance to the peak. Finding the distance even to the nearest
stars requires a longer baseline. As Earth orbits the Sun, two observations of
the same star made 6 months apart employ a baseline equal to the diameter
of Earth’s orbit. These measurements reveal that a nearby star exhibits an
annual back-and-forth change in its position against the stationary background
of much more distant stars. a measurement of the parallax angle p (one-half of
the maximum change in angular position) allows the calculation of the distance
d to the star.

We can write the equation as:

d = 1AU

tan p
≈ 1

p
AU (1.1)

The angle p is smaller as the distance
becomes larger. Using parallax, we are
going to introduce a new distance measure,
parsec.
A parsec is the distance at which 1
Astronomical Unit subtends an angle of 1
second of arc (arcsecond):

1 parsec = 3.26 light years

1pc = 1AU

( 1
3600 × π

180 )
= 206265AU

Figure 1.1: Parallax triangle

1 arc-second is 1/60 of an arc-minute, and an arc-minute is 1/60 of one
degree. Therefore, an arc-second is 1/3600 th of one degree.
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1. Basic Concepts

1.2 Stellar Luminosity

Stars are considered as a spherical source of radiating energy due to their
temperature; their total energy output can be determined by the equation
below, according to their surface temperature and surface area. This total
output is referred to as the stellar luminosity, L, and may be expressed as:

L = 4πR2σT 4, (1.2)

where R is the radius of the star, σ is known as Stefan-Boltzmann’s constant
and T is the star’s surface temperature. The unit of luminosity is Watts (joules
per second). For instance, the luminosity of our sun is 3.85 × 1026 W .

1.3 Brightness (radiant flux)

The brightness of a star is measured in terms of the flux received from the star.
The power received per unit area at the Earth depends on the stellar luminosity
and on the inverse square of the stellar distance. If the latter is known, the flux
provided by the source may be readily calculated and expressed in terms of
watts per square metre (W/m2). Imagine a star of luminosity L surrounded

Figure 1.2: Flux vs. distance

by a huge spherical shell of radius d. Then, assuming that no light is absorbed
during its journey out to the shell, the radiant flux, b, measured at distance d
is related to the star’s luminosity by:

b = L

4πd2 , (1.3)

the denominator is simply the area of the sphere. Since L does not depend on
d, the radiant flux is inversely proportional to the square of the distance from
the star. This is the well-known inverse square law for light.

1.4 Magnitude system

Invented by the astronomer Hipparchus 2200 years ago, it was simply a way to
“rank” the stars visible at night. The brightest were ranked as 1st magnitude,
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1.5. Limiting magnitude

the faintest visible were ranked as 6th magnitude. In other words, the brightest
stars were assigned the smallest number, the faintest the largest number. And 6
divisions were used because of the mysticism about 6, which is the first perfect
number. The brightness ratio of rank first and sixth is 100:

K5 = 100 → K = 5
√

100 = 2.5118 → b2
b1

= 2.5118m1−m2

m1 − m2 = −2.5 log b1

b2
, (1.4)

Where m is the magnitude of the stars. The magnitude system is based on
the comparison; This means that you need to know the magnitude of a certain
star and by comparing its brightness with other stars you can determine the
magnitude of the star.

The absolute magnitude, M , is defined to be the apparent magnitude a
star would have if it were located at 10 pc. Recall that a difference of 5
magnitudes between the apparent magnitudes of two stars corresponds to the
smaller magnitude star being 100 times brighter than the larger-magnitude
star. This allows us to find an equation for the absolute magnitude just like
the apparent magnitude:

M1 − M2 = −2.5 log L1

L2
, (1.5)

Where M is the absolute magnitude and L is the luminosity of the star. To
use this equation, we need to know a specific star’s absolute magnitude and
luminosity to be able to compare it with other stars. We have defined two
different magnitudes, absolute and apparent. We defined absolute magnitude
as the apparent magnitude at a certain distance (10 parsecs), therefore, there
should be a connection between the star distances and their magnitudes. This
relation is called Distance Modulus:

m − M = 5 log d − 5, (1.6)

Where d is in parsecs, m and M are apparent and absolute magnitudes
respectively. Unlike the previous magnitude relations (Equations 1.4-1.5),
distance modulus is written for a single star. It is the relationship between
the absolute and apparent magnitude of any star in the distance d. Using this
relation, it is clear that if you have any star in the distance of 10 parsecs, then
the two magnitudes should be equal to each other.

1.5 Limiting magnitude

Looking up at the night sky, we are not able to see all the stars; our eyes have
limited light-gathering aperture (around 6mm on a dark night!). The faintest
stars that your naked eye can see in the night are about 6 − 6.5 magnitudes.
However, this limiting magnitude might also change due to light pollution
or atmospheric effects. For instance, in a metropolitan area, your limiting
magnitude might go up to 2 − 3 magnitudes. This would seriously limit your
ability to see constellations.

We know that using optical devices would enable us to see fainter objects in
the sky. For instance, if you are using a telescope since it has a bigger diameter,

5



1. Basic Concepts

it is able to gather more light than your eyes can. Therefore, we have the
equation below to determine the limiting magnitude of a telescope:

me − mt = −5 log Dt

De
, (1.7)

Where me is the limiting magnitude of the naked eye (me ≈ 6.5), mt is the
telescope’s limiting magnitude, De is the pupil’s diameter (De ≈ 6 mm) and
Dt is the telescope’s diameter.

6



CHAPTER 2

Telescopes

2.1 Optical Telescopes

An optical telescope forms images of faint and distant stars. It can collect much
more light from space than the human eye can. Optical telescopes are built in
two basic designs—refractors and reflectors. The heart of a telescope is its
objective, a main lens (in refractors) or a mirror (in reflectors). Its function is
to gather light from a sky object and focus this light to form an image. The
ability of a telescope to collect light is called its light-gathering power.

Light-gathering power is proportional to the area of the collecting surface,
or to the square of the aperture (clear diameter of the main lens or mirror).
The size of a telescope, such as 150 mm or 8 m (6-inch or 26-foot), refers to
the size of its aperture. You can look at the image directly through an eyepiece,
which is essentially a magnifying glass. Or you can photograph the image or
record and process it electronically. Your eye lens size is about 6 mm. A 150
mm (6-inch) telescope has an aperture over 30 times bigger than your eye lens.
Its light-gathering power is 900 times greater than that of your eye. So, a star
appears over 900 times brighter with a 150 mm (6-inch) telescope than it does
to your unaided eye.

Astronomers build giant telescopes to detect fainter and more distant objects.
All stars appear brighter with telescopes than they do to the eye alone. The
extra starlight gathered by the telescope is concentrated into a single point.
Using time exposure, a giant 10 m (400-inch) telescope can image very faint
stars down to about magnitude 28, which is the same apparent brightness as a
candle viewed from the Moon!

2.2 Refracting Telescopes

A refracting telescope has a main, objective lens permanently mounted at the
front end of a tube. Starlight enters this lens and is refracted, or bent so that
it forms an image near the back of the tube. The distance from this lens to
the image is its focal length. You may look at the image through a removable
magnifying lens called the eyepiece. The tube keeps out scattered light, dust,
and moisture. Italian astronomer Galileo Galilei (1564–1642) first pointed a
refracting telescope skyward in 1609. The largest instrument he made was
smaller than 50 mm (2-inches).

7



2. Telescopes

Today refracting telescopes range in size from a beginner’s 60-mm (2.4-inch)
to the largest ever built, the 1 m (40-inch) telescope at the Yerkes Observatory
in Williams Bay, Wisconsin, U.S., which was completed in 1897.

Figure 2.1: (a) Objective lens gathers the light and forms an image. (b)
Eyepiece magnifies the image formed by the objective. (c) The focal length of
the objective lens.

2.3 Reflecting Telescopes

A reflecting telescope has a highly polished curved-glass mirror, the primary
mirror, mounted at the bottom of an open tube. When starlight shines on this
mirror, it is reflected back up the tube to form an image at the prime focus.

You can record the image at the prime focus, or you can use additional
mirrors to reflect the light to another spot. The Newtonian telescope,
originated by British scientist Sir Isaac Newton in 1668, uses a small, flat mirror
to reflect the light through the side of the tube to an eyepiece (Figure below).
The Cassegrain telescope uses a small convex mirror, a secondary mirror, to
reflect the light back through a hole cut in the primary mirror at the bottom
end of the tube. It is more compact than a refractor or Newtonian reflector of
the same aperture. The Schmidt-Cassegrain telescope combines an extremely
short-focus spherical primary mirror at the back end of a sealed tube with a
thin lens at the front.

8



2.4. F-number

Figure 2.2: Newtonian reflecting telescope

Figure 2.3: Cassegrain reflecting telescope.

2.4 F-number

Telescopes are often described by both their aperture size and f-number. The f-
number is the ratio of the focal length of the main lens or mirror to the aperture.
These specifications are important because the brightness, size, and clarity of
the image produced by a telescope depend on the aperture and focal length
of its main lens or mirror. For example, a “150-mm (6-inch), f/8 reflector”
means the primary mirror is 150 mm (6-inches) in diameter and has a focal
length of 1200 mm (8 × 150), or 48 inches (8 × 6).

2.5 Images

All stars except our Sun are so far away that they appear as dots of light in
a telescope. The Moon and planets appear as small disks. Image size is
proportional to the focal length of the telescope’s main lens or mirror.

For example, a mirror with a focal length of 2.5 m (100 inches) produces
an image of the Moon that measures about 2.5 cm (1 inch) across. You know
that the 5 m (200-inch), f/3.3 mirror has a focal length of 16.5 m (660-inches),
which is over six times as long. Hence, it produces an image of the Moon that
is about six times as big or 15 cm (6-inches) across.

Lenses and mirrors form real images that are upside down. (A real image
is formed by the actual convergence of light rays.) Since inverted images do
not matter in astronomical work and righting them would require additional
light-absorbing optics, nothing is done to turn images upright in telescopes.
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2. Telescopes

2.6 Lens and the focal length

In a camera with a lens, the image will be in focus only at a fixed distance F
from the lens. The distance F to the focal plane depends on the shape of the
lens, as well as on its refractive index. For lenses, a useful parameter is the
focal ratio f = F/D, where D is the diameter of the lens. The size of the image
produced is not affected by the diameter D of the lens but only by the focal
length F .

Figure 2.4: Focal plane.

In the figure 2.4, two stars separated by a small angle θ on the sky have
images that are separated by a physical distance d on the focal plane. Another
useful parameter, in addition to the focal length, is the scale of the image on
the focal plane, known for historical reasons as the plate scale. Specifically, an
angular distance θ on the celestial sphere is related to a physical distance d on
the image plane by the plate scale s:

θ[arcsec] = s[arcsec/mm].d[mm], (2.1)

we can also write this as:
θ[radians] = d

F
, (2.2)

and therefore:

θ[arcsec] = θ[radians]. 180◦

π[radians] .
3600arcsec

1◦ = 206265( d

f
), (2.3)

we have a relationship between the plate scale s and the focal length F:

s[arcsec/mm] = 206265
F [mm] . (2.4)

The human eye, for instance, has a focal length F ≈ 17 mm, and hence a
“plate scale” s ≈ 12, 100 arcsec/mm, or s ≈ 3.4◦/mm; when you look at the
full Moon, its image covers an area of your retina less than 0.15 mm across.
Large astronomical telescopes have focal lengths that are more conveniently
expressed in meters than in millimeters.

For these big telescopes, we may write:

s[arcsec/mm] = 206.265
F [m] = 206.265

fD[m] , (2.5)

10



2.6. Lens and the focal length

where f is the focal ratio, and D is the diameter of the telescope’s aperture.
As an example, the famous “forty-inch” Yerkes Telescope (at Williams Bay,
Wisconsin) has an aperture D = 1.02 m and a focal ratio f = 19. The plate
scale of the Yerkes Telescope is thus:

s = 206.265
19 × (1.02)arcsec/mm = 10.6 arcsec/mm, (2.6)

therefore an image of the full Moon produced by the Yerkes Telescope is 170
mm across, about the size of a salad plate.

The major optical component of a refracting telescope is the primary or
objective lens of focal length fobj . The purpose of the objective lens is to collect
as much light as possible and with the greatest possible resolution, bringing the
light to a focus at the focal plane. A photographic plate or other detector may
be placed at the focal plane to record the image, or the image may be viewed
with an eyepiece, which serves as a magnifying glass. The eyepiece would be
placed at a distance from the focal plane equal to its focal length, feye, causing
the light rays to be refocused at infinity. The figure below shows the path of
rays coming from a point source lying off the optical axis at an angle θ. The
rays ultimately emerge from the eyepiece at an angle ϕ from the optical axis.
The angular magnification produced by this arrangement of lenses can be shown
to be:

m = fobj

feye
. (2.7)

Figure 2.5: Telescope Magnification

In astronomy, the field of view is the amount of sky you can see, whether
with your unaided vision, binoculars, or a telescope. If you had eyes on all sides
of your head, you would have a 360◦ field of view. (Some insects actually do!)
If you include peripheral vision, your naked eye field of view is nearly 180◦, but
with varying quality across this field. A telescope will have a much smaller field
of view, but it has significant advantages, such as greater magnification and
light-gathering power.

Field of view (FOV) is the diameter of a region of the sky that you can see
using a specific instrument. The FOV would change with the magnification of
the telescope you are using.
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2. Telescopes

Figure 2.6: Field of view

2.7 Telescope resolving power

The resolving power of a telescope is defined as the ability of a telescope
to distinguish objects with a small angle between them. This is known as
the theoretical resolving power of the instrument. If the telescope is of
good design and in correct adjustment, it should be possible to achieve this
theoretical value. It should be possible to resolve two stars if they are separated
by an angle (in radians) greater than:

α = 1.22 λ

D
. (2.8)

This value is known as the theoretical angular resolving power of the telescope.
It can be seen that the resolving power is inversely proportional to the diameter
of the objective. We take a value of 5500 Angstroms for λ being the effective
wavelength for visual observations.
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CHAPTER 3

Observing the Universe

3.1 Stellar Evolution

Stellar evolution refers to the life cycle of a star, from its formation through
to its eventual demise. The study of stellar evolution is important not only
for understanding the structure and behavior of individual stars, but also for
understanding the evolution of galaxies and the universe as a whole. In this
article, we will discuss the various stages of stellar evolution, including the
formation of stars, the main sequence phase, the evolution of different types of
stars, and their eventual fates.

Figure 3.1: Stellar evolution for stars with different initial masses
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3. Observing the Universe

Formation of Stars

Stars are formed from large clouds of gas and dust, known as nebulae. These
clouds are primarily composed of hydrogen and helium, with smaller amounts
of heavier elements. The process of star formation begins when a region of a
nebula becomes dense enough for gravity to take over. As the gas and dust
collapse under their own weight, the temperature and pressure at the center of
the cloud begin to rise. Eventually, the temperature and pressure become high
enough to trigger nuclear fusion, and a new star is born.

Main Sequence Phase

The main sequence is the longest phase in a star’s life cycle. During this phase,
the star is in a state of hydrostatic equilibrium, which means that the inward
pull of gravity is balanced by the outward pressure created by nuclear fusion in
the core. The temperature and pressure at the core of the star are high enough
to fuse hydrogen atoms into helium, releasing energy in the process.

The size, luminosity, and color of a star during its main sequence phase
depend on its mass. More massive stars are hotter, brighter, and bluer than
less massive stars. The Sun, for example, is a main sequence star with a mass
of about 1.99 x 1030 kg.

Red Dwarfs

Red dwarfs are the most common type of star in the universe. They are small,
cool stars with masses less than about 0.5 times that of the Sun. Because they
are so small and cool, red dwarfs can burn hydrogen for a very long time, with
some estimated to live up to trillions of years.

White Dwarfs

White dwarfs are the remnants of low-mass stars, such as red dwarfs or main
sequence stars with masses less than about 8 times that of the Sun. When these
stars run out of fuel, they no longer have the outward pressure from nuclear
fusion to balance the inward pull of gravity, and they collapse inward. This
collapse causes the outer layers of the star to be expelled in a planetary nebula,
leaving behind a hot, dense core known as a white dwarf.

Giants and Supergiants

Giants and supergiants are stars that have exhausted the hydrogen fuel in their
cores and have begun fusing heavier elements. As the core contracts and heats
up, the outer layers of the star expand and cool, causing the star to increase in
size and luminosity. Giants and supergiants are classified based on their size
and luminosity, with supergiants being the largest and most luminous.

Supernovae

Supernovae are some of the most violent events in the universe. They occur
when a massive star runs out of fuel and can no longer generate enough pressure
to resist the inward pull of gravity. The core of the star collapses, creating a
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shock wave that causes the outer layers of the star to explode outward in a
brilliant display of light and energy. This explosion can briefly outshine an
entire galaxy and release more energy than the Sun will produce in its entire
lifetime.

There are two types of supernovae: Type I and Type II. Type I supernovae
occur when a white dwarf in a binary star system accretes enough matter from
its companion to reach a critical mass and undergo a runaway fusion reaction.
Type II supernovae occur when a massive star runs out of fuel and collapses,
triggering a shock wave that causes the outer layers of the star to explode.

Black Holes and Neutron Stars

When a massive star collapses in on itself, the core can become so dense that it
forms a black hole or a neutron star. Black holes are regions of space where the
gravity is so strong that nothing, not even light, can escape. Neutron stars, on
the other hand, are incredibly dense, with the mass of the Sun compressed into
a sphere only about 20 km in diameter.

Figure 3.2 is called a black hole shadow. The black hole’s extreme gravity
alters the paths of light coming from different parts of the disk, producing
the warped image. The black hole’s extreme gravitational field redirects and
distorts light coming from different parts of the disk, but exactly what we see
depends on our viewing angle. The greatest distortion occurs when viewing the
system nearly edgewise.

Figure 3.2: The turbulent disk of gas churning around a black hole takes on a
crazy double-humped appearance

Stellar evolution is a complex process that is still not fully understood.
However, by studying the different stages of stellar evolution, astronomers can
gain a better understanding of the physical processes that govern the universe.
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3.2 Galaxies

Galaxies are vast systems of stars, gas, and dust held together by gravity.
They come in a variety of shapes and sizes, and play a crucial role in our
understanding of the universe. We will explore the different types of galaxies
and their properties, as well as some fascinating facts about these cosmic
structures.

Figure 3.3: Different types of galaxies

Elliptical Galaxies

Elliptical galaxies are the most common type of galaxy in the universe. They
are shaped like ellipsoids and contain mostly old, red stars. Elliptical galaxies
can range in size from small dwarf galaxies to giant ellipticals that are up to 20
times larger than the Milky Way.

The largest known elliptical galaxy, IC 1101, has a diameter of over 6 million
light years and contains trillions of stars.

Spiral Galaxies

Spiral galaxies are characterized by their prominent spiral arms, which are made
up of young, blue stars, gas, and dust. The Milky Way is a spiral galaxy, and
our Sun is located in one of its spiral arms. Spiral galaxies come in a variety of
shapes, from tight and compact to loose and open.

The Andromeda Galaxy, our closest neighboring galaxy, is a spiral galaxy
that is expected to collide with the Milky Way in about 4 billion years.

Irregular Galaxies

Irregular galaxies have no well-defined shape and contain a mix of old and
young stars, gas, and dust. They are often small and found in the vicinity of
larger galaxies, which can disrupt their structure through tidal forces.
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3.2. Galaxies

The Small Magellanic Cloud, a satellite galaxy of the Milky Way, is an
irregular galaxy that is visible to the naked eye from the southern hemisphere.

Size and Mass

Galaxies come in a range of sizes and masses, with elliptical galaxies typically
being the largest and most massive, and irregular galaxies being the smallest
and least massive. The mass of a galaxy is typically measured by its rotation
curve, which describes the speed of stars and gas as a function of their distance
from the center.

The smallest known galaxy, Segue2, has a mass of only about 1,000 times
that of the Sun and contains just a few hundred stars.

Composition

Galaxies are composed of a variety of elements, including hydrogen, helium,
and heavier elements such as carbon and oxygen. The relative abundances of
these elements can provide clues about the formation and evolution of a galaxy.

The stars in the Andromeda Galaxy contain more heavy elements than
those in the Milky Way, suggesting that it has had a more active history of star
formation.

Black Holes

Many galaxies, including the Milky Way, contain supermassive black holes
at their centers. These black holes can have masses ranging from millions to
billions of times that of the Sun and can profoundly influence the evolution of
their host galaxies.

The largest known black hole, TON 618, has a mass of about 66 billion
times that of the Sun and is located in a quasar, an extremely luminous object
powered by material falling onto the black hole.

Galaxies are incredibly diverse and complex systems that continue to
fascinate astronomers and the public alike. By studying their properties and
evolution, we can gain insights into the history and structure of the universe.

Galaxy Evolution

Galaxies are not static objects, but rather are constantly changing over time.
The study of galaxy evolution seeks to understand how galaxies form, grow,
and change over time.

Galaxies are thought to have formed from the gravitational collapse of
primordial gas clouds in the early universe. These clouds were primarily
composed of hydrogen and helium, with small amounts of heavier elements.
As the gas clouds collapsed, the temperature and pressure at the center of the
cloud increased, triggering the formation of the first stars and galaxies.

Over time, galaxies grow by merging with other galaxies. When galaxies
merge, their stars and gas clouds interact gravitationally, causing them to lose
energy and fall towards the center of the newly-formed galaxy. As more and
more galaxies merge together, the resulting galaxy becomes larger and more
massive.
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3. Observing the Universe

Galaxies also evolve through the process of star formation. As stars form and
die within a galaxy, they release heavy elements into the surrounding gas. Over
time, the concentration of heavy elements within a galaxy increases, leading to
changes in the way the gas clouds behave. This can lead to changes in the rate
of star formation within the galaxy.

Observations of distant galaxies suggest that they were more active in the
past than they are today. Galaxies in the early universe were more likely to be
forming stars at a rapid rate and were often much more irregular in shape than
galaxies we see today. This suggests that galaxies have undergone significant
evolution over time.

Galaxy evolution is a complex and ongoing area of research in astronomy.
By studying the properties of galaxies at different points in cosmic history,
astronomers hope to gain a better understanding of how galaxies form and
evolve over time, and how they contribute to the overall structure and evolution
of the universe.

3.3 Doppler effect and Red shift

In 1842 the Austrian physicist Christian Doppler showed that as a source of
sound moves through a medium (such as air), the wavelength is compressed
in the forward direction and expanded in the backward direction. This change
in wavelength of any type of wave caused by the motion of the source or the
observer is called a Doppler shift. Doppler deduced that the difference between
the wavelength λobs observed for a moving source of sound and the wavelength
λrest measured in the laboratory for a reference source at rest is related to the
radial velocity vr (the component of the velocity directly toward or away from
the observer, of the source through the medium by:

λobs − λrest

λrest
= ∆λ

λrest
= vr

vs
, (3.1)

where vs is the speed of sound in the medium. When astronomers observe a
star or galaxy moving away from or toward Earth, the wavelength of the light
they receive is shifted toward longer or shorter wavelengths, respectively. If the
source of light is moving away from the observer (vr > 0), then λobs > λrest.
This shift to a longer wavelength is called a redshift. Similarly, if the source
is moving toward the observer (vr < 0), then there is a shift to a shorter
wavelength, a blueshift. most of the objects in the universe outside of our own
Milky Way Galaxy are moving away from us, redshifts are commonly measured
by astronomers. A redshift parameter z is used to describe the change in
wavelength; it is defined as:

z = λobs − λrest

λrest
= ∆λ

λrest
. (3.2)

There is a relation between the velocity of the object moving away or toward
us and the redshift z. If the velocity of the object is comparable to the speed of
light, we need to use the relativistic formula:

z =
√

1 + vr

vs

1 − vr

vs

− 1, (3.3)
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Where c is the speed of light. Its non-relativistic formula can be written as:

z = vr

c
(3.4)

3.4 Hubble’s Law

In the late 1920s, Hubble discovered that the spectral lines of galaxies were
shifted towards the red by an amount proportional to their distances. If the
redshift is due to the Doppler effect, this means that the galaxies move away
from each other with velocities proportional to their separations (this means
that the Universe is expanding as a whole). Hubble’s law states that the redshift
in the light coming from distant galaxies is proportional to their distance. The
discovery of the linear relationship between recessional velocity and distance
yields a straightforward mathematical expression for Hubble’s Law as follows:

v = H0D, (3.5)

where v is the recessional velocity due to redshift, typically expressed in km/s,
D is the distance of the object in Mpc, and H0 is Hubble’s constant. Usually,
the Hubble’s constant is around 65 − 75 km

s.Mpc in the problems.

3.5 Planetary motion

The apparent motions of the planets are quite complicated, partly because
they reflect the motion of the Earth around the Sun. Normally the planets
move eastward (direct motion, counterclockwise as seen from the Northern
hemisphere) when compared with the stars.

Figure 3.4: Planetary configurations

The fact that Mercury and Venus are never seen more than 28◦ and 47◦,
respectively, east or west of the Sun clearly shows that their orbits are located
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inside the orbit of Earth. These planets are referred to as inferior planets,
and their maximum angular separations east or west of the Sun are known as
the greatest eastern elongation and greatest western. elongation, respectively
(see Figure 3.4).

Opposition occurs when the Earth lies between the Sun and the superior
planet. That is, the Sun and planet are 180° apart on the celestial sphere as
seen from the Earth. A conjunction occurs when the Sun lies between the
Earth and the superior planet. That is, the Sun and planet are 0° apart as seen
from the Earth. Quadrature occurs when the Sun and the superior planet
are 90° apart as seen from the Earth. The quadrature can be either eastern,
when the planet appears 90° east of the Sun in the sky, or western when the
planet appears 90° west of the Sun. Inferior conjunction occurs when the
inferior planet lies between the Earth and the Sun. Superior conjunction
occurs when the Sun lies between the Earth and the inferior planet.

The relative orbital motions of Earth and the other planets mean that
the time interval between successive oppositions or conjunctions can differ
significantly from the amount of time necessary to make one complete orbit
relative to the background stars. The former time interval (between oppositions)
is known as the synodic period (S), and the latter time interval (measured
relative to the background stars) is referred to as the sidereal period (P ). The
relationship between the two periods is given by:

1
S

= 1
TP

− 1
TE

, (3.6)

where TP is the period of rotation of a random planet, TE is the period
of Earth (1 year), and S is the synodic period (or the period between two
successive same situations of the two planets).
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CHAPTER 4

Spherical Astronomy

We have seen that the observer who views the heavens at night gets the
impression that they are at the centre of a great hemisphere onto which the
heavenly bodies are projected. The moon, planets, and stars seem to lie on this
celestial hemisphere, their directions defined by the positions they have on its
surface. For many astronomical purposes, the distances are irrelevant so the
radius of the sphere can be chosen at will. The description of the positions of
bodies on it, considering positional changes with time, necessarily involves the
use of special coordinate and timekeeping systems. The relationship between
the positions of bodies requires a knowledge of the geometry of the sphere.
This branch of astronomy, called spherical astronomy, is in one sense the
oldest branch of the subject, its foundations dating back at least 4000 years.
Its subject matter is still essential and never more so than today when the
problem arises of observing or calculating the position of an artificial satellite
or interplanetary probe. We, therefore, begin by considering the geometry of
the sphere.

4.1 Spherical geometry

The geometry of the sphere is made up of great circles, small circles, and arcs of
these figures. Distances along great circles are often measured as angles since,
for convenience, the radius of the sphere is made unity. A great circle is defined
to be the intersection with the sphere of a plane containing the centre of the
sphere. Since the centre is equidistant from all points on the sphere, the figure
of intersection must be a circle. If the plane does not contain the centre of the
sphere, its intersection with the sphere is a small circle.
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4. Spherical Astronomy

We can draw infinite circles on a sphere, some may have a radius of the
sphere (great circles) and others will have a smaller radius (small circles). In
the figure on the right ANBM, CNDM, and APBQ are all great circles, while
EFG is a small circle.

Figure 4.1: Great and small circles on a sphere

The area of the spherical triangle can be found by the equation:

SABC = (A + B + C − π)R2, (4.1)

where all angles must be written in terms of Radians and R is the radius
of the sphere. Just as the formulas of plane trigonometry can be used to
perform calculations in plane geometry, special trigonometrical formulas for use
in spherical geometry can be established. There are many such formulas but
four are more often used than any of the others. They are the relations between
the sides and angles of a spherical triangle and are invaluable in solving the
problems that arise in spherical astronomy.

Figure 4.2: Area of a spherical triangle with angles of A, B, and C
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ABC is a spherical triangle with sides AB, BC, and CA of lengths c, a, and
b, respectively, and with angles ∠CAB,∠ABC, and ∠BCA hereafter referred
to as angles A, B and C respectively. The four formulas are:

Figure 4.3: Sample spherical triangle

Sine formula:
sin a

sin A
= sin b

sin B
= sin c

sin C
(4.2)

Cosine formula:

cos a = cos b cos c + sin b sin c cos A
cos b = cos a cos c + sin a sin c cos B
cos c = cos a cos b + sin a sin b cos C

(4.3)

Polar formula formula:

− cos A = cos B cos C + sin B sin C cos a
− cos B = cos A cos C + sin A sin C cos b
− cos C = cos A cos B + sin A sin B cos c

(4.4)

Four-parts formula:

cos a cos C = sin a cot b − sin C cot B (4.5)

4.2 Position on the Earth’s surface

To illustrate these concepts, we consider the Earth. Geographers have already
shown us how to set up a coordinate system on a sphere; the system of
latitude and longitude provides a coordinate system on the surface of the
(approximately) spherical Earth. On the Earth, the north and south poles
represent the points where the Earth’s rotation axis passes through the Earth’s
surface. The equator is the great circle midway between the north and south
pole, dividing the Earth’s surface into a northern hemisphere and a southern
hemisphere.
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Figure 4.5: Longitude l

The latitude of a point on the Earth’s surface is its angular distance from
the equator, measured along a great circle perpendicular to the Earth’s equator.
Latitude is measured in degrees, arc-minutes, and arc-seconds, as is longitude.
Thus, the use of latitude and longitude does not require knowing the size of
the Earth in kilometers or any other unit of length. The longitude may be
expressed in angular measure or in time units related to each other by the table
on the right.

Figure 4.6: Unit conversions used in spherical astronomy

4.3 The horizontal (alt-azimuth) system

It is convenient to imagine a sphere at a great distance (“infinity”) upon which
all stars lie. This is called the celestial sphere. The positions of stars on this
sphere may be specified with two angles, analogous to the way latitude and
longitude specify a position on the earth’s surface. This celestial sphere is an
artificial construction; stars are not all at the same distance. Stars in our own
Galaxy range in the distance from 4 light-years to more than 50000 light-years
from the Earth. Nevertheless, the concept of the celestial sphere is useful for
charting the sky as one sees it.

One such coordinate system on the celestial sphere is based on an observer’s
horizon and hence is called the horizon coordinate system. In this system, the
latitude-like coordinate is the altitude, defined as the angle of a celestial object
above the horizon circle. The zenith (the point directly overhead) is at an
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altitude of 90◦. Points on the horizon circle are at an altitude of 0◦. The nadir
is at an altitude of −90◦, but in practice, negative altitudes are seldom used,
since they represent objects that are hidden by the Earth. The longitude-like
coordinate in the horizon coordinate system is called the azimuth

Figure 4.7: Horizontal(alt-azimuth) coordinate system

In the above figure, X is the position of the star. The arc of X̂M = h,
where h is the altitude. Therefore, the zenith distance is X̂Z = 90◦ − h = z.
The azimuth of this star is the red angle shown in the figure: A = 360◦ − N̂OM .
Azimuth is usually expressed from North to East. But if the star is located in
the western hemisphere (like the star in the figure), we can express the azimuth
from North to West: A = N̂OM W .

For any point on the celestial sphere, half a great circle can be drawn from
the zenith, through the point in question, to the nadir. The half-circle that
runs through the north point on the horizon circle acts as the ıprimemeridianȷ
in the horizon coordinate system. The azimuth is measured in degrees running
from north to east. An object due north of an observer has an azimuth of 0°,
an object due east has an azimuth of 90°, and so forth. If you know the altitude
and azimuth of any object in your horizon coordinate system, you know where
to point your telescope to see it.
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If we consider the figure below for an observer in a particular latitude of ϕ,
the direction of rotation of the Earth is P1, and since the north celestial pole
(NCP ) is in distant, P2 will be the direction for that the person will see the
north celestial pole. It is depicted that the altitude of the pole is equal to the
latitude of the observer.

Figure 4.8: altitude of NCP for the observer on Earth

One shortcoming of the horizon coordinate system is that every observer on
Earth has a different, unique horizon and hence has a different, unique horizon
coordinate system. A star that is near the zenith (altitude ≈ 90◦) for an
observer in Buenos Aires will be near the nadir (altitude -90°) for an observer
in the antipodal city of Shanghai. To describe the positions of objects on the
celestial sphere, it is useful to have a coordinate system that all astronomers,
regardless of location, can agree on, just as geographers all agree to use latitude
and longitude to describe positions on the Earth.

4.4 The equatorial system

To build a coordinate system that works for everyone on Earth, we start by
projecting the Earth’s poles and equator outward onto the celestial sphere. The
Earth’s rotation axis, which passes through the north and south poles of the
Earth, intersects the celestial sphere at the north celestial pole (labeled as
NCP ) and the south celestial pole (labeled as SCP ). The north celestial
pole is at the zenith for an observer at the Earth’s north pole; more generally,
for an observer at a latitude north of the equator, it will be at an altitude of
ϕ and azimuth of 0◦. The projection of the Earth’s equator onto the celestial
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sphere is called the celestial equator. The celestial equator passes through
the zenith for an observer on the Earth’s equator.

On the Earth’s surface, a point’s latitude is its angular distance north or
south of the equator. Similarly, on the celestial sphere, a point’s declination (δ)
is its angular distance north or south of the celestial equator. For points north
of the celestial equator, the declination is positive (0◦ < δ ≤ 90◦), and for points
south of the celestial equator, the declination is negative (−90◦ ≤ δ < 0◦).

Right ascension α is analogous to longitude and is measured eastward
along the celestial equator from the vernal equinox (γ) to its intersection
with the object’s hour circle (the great circle passing through the object being
considered and through the north celestial pole). Right ascension is traditionally
measured in hours, minutes, and seconds. The coordinates of the right ascension
and declination are also indicated in the figure below. Since the equatorial
coordinate system is based on the celestial equator and the vernal equinox,
changes in the latitude and longitude of the observer do not affect the values of
right ascension and declination. Values of and are similarly unaffected by the
annual motion of Earth around the Sun.

Figure 4.9: Equatorial coordinate system

We used a unique point to define the Azimuth angle in horizontal coordinates,
that specific point is North. Having that in mind, we also know that the NCP
is pointing towards the North. We can draw both coordinates on a sphere for
an observer.

If we sketch both coordinates on a single sphere, then the celestial equator
intersects the horizon circle in two points West and East. Points P and Z are
the poles of the celestial equator and the horizon respectively. But W lies on
both these great circles so that W is 90◦ from the points P and Z. Hence, W
is a pole on the great circle ZPN and must, therefore, be 90◦ from all points
on it—in particular from N and S. Hence, it is the west point. By a similar
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argument, E is the east point. Any great semicircle through P and Q is called
a meridian. The meridian through the celestial object X is the great semicircle
PXBQ cutting the celestial equator in B.

Figure 4.10: Equatorial coordinate system for an observer on Earth

In particular, the meridian PZTSQ indicated because of its importance by
a heavier line is the observer’s meridian. An observer viewing the sky will
note that all natural objects rise in the east, climbing in altitude until they
transit across the observer’s meridian then decrease in altitude until they set
in the west. A star, in fact, will follow a small circle parallel to the celestial
equator in the arrow’s direction. Such a circle (UXV in the diagram) is called
a parallel of declination and provides us with one of the two coordinates in
the equatorial system. The declination, δ, of the star is the angular distance
in degrees of the star from the equator along the meridian through the star. It
is measured north and south of the equator from 0◦ to 90◦, being taken to be
positive when north. The declination of the celestial object is thus analogous
to the latitude of a place on the Earth’s surface, and indeed the latitude of any
point on the surface of the Earth when a star is in its zenith is equal to the
star’s declination.

A quantity called the north polar distance of the object (X in the figure)
is often used. It is the arc PX.

Obviously,

north polar distance = 90◦ − declination.

It is to be noted that the north polar distance can exceed 90◦. The star,
then, transits at U , sets at V , rises at L and transits again after one rotation
of the Earth. The second coordinate recognizes this. The angle ZPX is called
the hour angle, t, of the star and is measured from the observer’s meridian
westwards (for both north and south hemisphere observers) to the meridian
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through the star from 0h to 24h or from 0◦ to 360◦. Consequently, the hour
angle increases by 24h each sidereal day for a star. Having both coordinates on
the sphere, using Zenith, the North celestial pole, and the star (three points) we
are able to create a spherical triangle (figure below). We need to use spherical
trigonometry to solve any spherical triangle.

Figure 4.11: Coordinate system conversion

A common problem in spherical astronomy is obtaining a star’s coordinates
in one system, given the coordinates in another system. The observer’s latitude
is usually known. For example, we may want to calculate the hour angle of t
and declination δ of a body when its azimuth (east of north) and altitude are
A and h. Assume the observer has a latitude ϕ. We start by writing the cosine
formula:

cos PX = cos PZ cos ZX + sin PZ sin ZX cos PZX
−→ sin δ = sin ϕ sin h + cos ϕ cos h cos A

(4.6)

By using the cosine formula again:

cos ZX = cos PZ cos PX + sin PZ sin PX cos ZPX
−→ sin a = sin ϕ sin δ + cos ϕ cos δ cos t

(4.7)

You could also use four-parts or sine law to solve the spherical triangle. Based
on the known parameters in the triangle, you should decide which formulas to
use in order to solve the triangle.

4.5 The ecliptic system

The orbital plane of the Earth, the ecliptic, is the reference plane of another
important coordinate frame. The ecliptic can also be defined as the great circle
on the celestial sphere described by the Sun over the course of one year. This
frame is used mainly for planets and other bodies of the solar system. The
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orientation of the Earth’s equatorial plane remains invariant, unaffected by
its annual motion. In spring, the Sun appears to move from the southern
hemisphere to the northern one. The time of this remarkable event as well as
the direction of the Sun at that moment is called the vernal equinox. At the
vernal equinox, the Sun’s right ascension and declination are zero.

Figure 4.12: The plane of Earth’s orbit seen edge-on

The two quantities specifying the position of an object on the celestial
sphere in this system are ecliptic longitude and ecliptic latitude. In figure 4.13
below a great circle arc through the pole of the ecliptic K and the celestial
object X meets the ecliptic in point D. Then the ecliptic longitude, λ, is
the angle between γ and D, measured from 0◦ to 360◦ along the ecliptic in the
eastwards direction, that is in the direction in which right ascension increases.
The ecliptic latitude, β, is measured from D to X along the great circle arc
DX, being measured from 0◦ to 90◦ north or south of the ecliptic. It should be
noted that the north pole of the ecliptic, K, lies in the hemisphere containing
the north celestial pole. It should also be noted that ecliptic latitude and
longitude are often referred to as celestial latitude and longitude.

Figure 4.13: The Celestial sphere used for coordinate system conversion
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Let’s assume the equatorial coordinates of a star are known, and we want
to determine its ecliptic coordinates. This means α and δ are given. Using the
spherical triangle above, we can use cosine law:

cos (90 − β) = cos ϵ cos (90 − δ) + sin ϵ sin (90 − δ) cos (90 + α)
−→ sin β = cos ϵ sin δ − sin ϵ cos δ cos α

(4.8)

By using the cosine formula again:

cos (90 − δ) = cos ϵ cos (90 − β) + sin ϵ sin (90 − β) cos (90 − λ)
−→ sin δ = cos ϵ sin β − sin ϵ cos β cos λ

−→ sin λ = sin δ−cos ϵ sin β
sin ϵ cos β

(4.9)
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CHAPTER 5

Celestial Mechanics

By applying Newton’s laws of motion and the law of universal gravitation,
we are able to comprehend and analyze the complex movements of celestial
objects within the solar system. The celestial objects that we can observe
include the planets, comets, natural satellites, and man-made satellites that are
orbiting around their respective planets. The analytical process is simplified
by making two assumptions. The first assumption is that we only consider the
gravitational force between the orbiting body, such as the Earth, and the central
body, which is the Sun. We disregard the gravitational forces exerted by other
celestial bodies, such as other planets, to focus solely on the interaction between
the orbiting and central body. Secondly, we assume that the central body is
significantly more massive than the orbiting body, enabling us to disregard the
central body’s motion caused by their mutual attraction. Although both objects
actually orbit around their common center of mass, if one of the celestial bodies
is much more massive than the other, the center of mass can be approximated
to be at the center of the heavier object.

5.1 Newton’s Law of Gravitation

Gravitational force is one of the four fundamental forces of nature, along with
electromagnetic force, weak nuclear force, and strong nuclear force. It is the
force that causes objects with mass to be attracted to one another. In this
article, we will explore the concept of gravitational force and its mathematical
description.
The English physicist Sir Isaac Newton was the first to describe the nature
of gravitational force. He formulated his law of gravitation in 1687, which
states that the force of attraction between two objects with masses m1 and m2,
separated by a distance r, is given by:

FG = G
m1m2

r2 , (5.1)

where FG is the gravitational force, G is the gravitational constant, and r is the
distance between the two objects. The value of G is approximately 6.674×10−11

N m2/kg2.
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Gravitational Field

The gravitational force can also be described in terms of a gravitational field.
A gravitational field is a region of space where an object with mass experiences
a force due to the presence of another object with mass. The gravitational field
strength at a point in space is defined as the force per unit mass experienced
by a small test mass placed at that point.
The gravitational field strength at a distance r from a point mass M is given
by:

g = GM

r2 , (5.2)

where G is the gravitational constant. The gravitational field strength is a
vector quantity, pointing towards the point mass M .

Gravitational Potential Energy

Gravitational force is a conservative force, meaning that the work done by the
force in moving an object from one point to another is independent of the path
taken. The gravitational potential energy of an object at a point in space is the
amount of work required to move the object from an infinite distance to that
point, against the gravitational force.
The gravitational potential energy U of an object of mass m at a distance r
from a point mass M is given by:

U = −GMm

r
, (5.3)

The negative sign indicates that the gravitational force is attractive, and the
potential energy is lower at closer distances.

5.2 Linear Momentum

Linear momentum, also known as linear motion, is the product of an object’s
mass and its velocity. It is a vector quantity, meaning it has both magnitude
and direction. The formula for linear momentum is:

p = mv, (5.4)

where p is the linear momentum, m is the mass of the object, and v is its
velocity.
Linear momentum is conserved in an isolated system, meaning that the total
linear momentum of a system remains constant if no external forces act upon
it. This principle is known as the law of conservation of linear momentum.

5.3 Angular Speed

Angular speed is the rate at which an object rotates or revolves about a fixed
axis. It is a scalar quantity, meaning it has magnitude but no direction. The
formula for angular speed is:
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5.4. Angular Momentum

ω = θ

t
, (5.5)

where ω is the angular speed, θ is the angular displacement of the object, and t
is the time taken for the object to complete the rotation.
Angular speed is measured in radians per second (rad/s). It is important to
note that angular speed is not the same as linear speed, which is the distance
traveled per unit time.

5.4 Angular Momentum

Angular momentum is the rotational equivalent of linear momentum. It is the
product of an object’s moment of inertia and its angular velocity. The formula
for angular momentum is:

L = Iω, (5.6)

where L is the angular momentum, I is the moment of inertia of the object,
and ω is its angular velocity.
Angular momentum can also be expressed as the product of the mass of the
object, its tangential velocity, and the distance from the axis of rotation:

L = mrv, (5.7)

where m is the mass of the object, v is its tangential velocity, and r is the
distance from the axis of rotation.
Angular momentum is also a vector quantity, meaning it has both magnitude
and direction. Its direction is perpendicular to the plane of rotation. The
moment of inertia is a measure of an object’s resistance to rotational motion
and depends on both the mass and the distribution of mass relative to the axis
of rotation.

Like linear momentum, angular momentum is conserved in an isolated system.
This principle is known as the law of conservation of angular momentum. The
law states that if no external torques act upon an isolated system, the total
angular momentum of the system remains constant. Mathematically, this can
be expressed as:

dL

dt
= τnet, (5.8)

where dL/dt is the rate of change of angular momentum and τnet is the net
external torque acting on the system. If there is no net external torque, then
dL/dt is zero and the angular momentum of the system is conserved.

5.5 Conservation of Angular Momentum

The law of conservation of angular momentum has many important applications
in physics. For example, it can be used to explain the behavior of spinning tops,
the motion of planets around the sun, and the behavior of particles in quantum
mechanics.
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One important application of conservation of angular momentum is in
understanding the behavior of rotating systems. For example, when an ice
skater pulls their arms in, their moment of inertia decreases, causing their
angular velocity to increase, and their angular momentum to remain constant.
This principle is also used in designing objects such as satellites and gyroscopes,
which rely on the conservation of angular momentum to maintain their stability
and orientation in space.
Another important application of conservation of angular momentum is in the
study of collisions. When two objects collide, their angular momentum may
change due to external torques, such as friction. However, if the collision is
elastic and there are no external torques, the total angular momentum of the
system will remain constant.

Overall, the law of conservation of angular momentum is a fundamental
principle in physics that helps to explain the behavior of rotating systems and
the interactions between objects in motion.

5.6 Kepler’s laws

Kepler’s laws, which describe the motions of planets, were originally deduced
by Johannes Kepler from observations of the planet Mars. However, these
laws can also be derived from Isaac Newton’s laws of motion and his law
of gravitation, which provide an empirical basis for understanding planetary
motion. Additionally, the application of Newton’s laws of motion and law of
universal gravitation extends beyond just the study of celestial bodies in our
solar system. These laws can be applied to the study of the universe as a
whole, including the behavior of galaxies and the evolution of the universe itself.
They also have practical applications, such as in the design and operation of
spacecraft and satellites. By understanding how gravity works and how objects
move in space, scientists and engineers can plan and execute space missions
with incredible precision, including everything from sending probes to explore
distant worlds to placing satellites in orbit for communication and navigation
purposes.

1. Kepler’s First Law: All planets follow elliptical orbits with the Sun
at one of the two foci. Newton realized that there is a direct mathematical
relationship between inverse-square ( 1

r2 ) forces and elliptical orbits. Figure 4.1
illustrates a typical elliptical orbit, where the orbiting body is located at polar
coordinates (r, θ) and the origin is at the central body. An elliptical orbit is
characterized by two parameters: the semimajor axis a and the eccentricity e.
The distance from the center of the ellipse to either focus is ea. A circular orbit
is a special case of an elliptical orbit with e = 0, where the two foci merge to a
single point at the center of the circle. For example, Earth follows an elliptical
orbit with an eccentricity of approximately 0.0167.
The maximum distance Ra of the orbiting body from the central body is
indicated by the prefix apo− (or sometimes ap−), as in aphelion (the maximum
distance from the Sun) or apogee (the maximum distance from Earth). Similarly,
the closest distance Rp is indicated by the prefix peri−, as in perihelion or
perigee. As you can see from Figure 4.1:

Ra = a(1 + e), Rp = a(1 − e). (5.9)
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5.6. Kepler’s laws

Figure 5.1: A planet of mass m moving in an elliptical orbit around the Sun
with mass M

And for circular orbits Ra = Rp.

2. The Law of Areas: dictates that, during equal intervals of time, the
imaginary line that connects a planet to its central star will cover equal areas.
Figure 4.2 serves to visually demonstrate this concept, and implies that an
orbiting object will move with greater velocity when it is nearer to the central
body than when it is further away. It can be proven that the Law of Areas is
in fact equivalent to the Law of Conservation of Angular Momentum.

If we examine the small area increment A that is traversed during a time
interval t, as illustrated in Figure 4.2, we can see that the area of the triangular
wedge is roughly equal to half of its base, r∆θ multiplied by its height r. We
can then calculate the rate at which this area is swept out:

dA

dt
= lim

∆t→0

∆A

∆t
= lim

∆t→0

1
2r2 ∆θ

∆t
= 1

2r2ω (5.10)

If we make the assumption that the more massive body M can be considered
stationary, then the angular momentum of the orbiting body m can be described
relative to the origin at the central body as:

Lz = Iω = mr2ω (5.11)

Thus:
dA

dt
= Lz

2m
(5.12)

If the M and m system is isolated and there is no external torque acting
on it, then the angular momentum Lz remains constant. This means that the
derivative of the area A with respect to time t is also constant, as stated in the
equation. Consequently, during each interval of time dt, the line connecting m
and M sweeps out an equal area dA, which confirms Kepler’s second law. The
increase in speed of a comet as it passes close to the Sun is an example of this
effect and is directly related to the law of conservation of angular momentum.
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Figure 5.2: (a) The law of areas is demonstrated by the equal shaded areas,
which are traversed by a line connecting a planet to the Sun in equal time
intervals. (b) During a time interval t, the line connecting a planet to the Sun
sweeps through an angle theta (θ) while covering an area A.

2. The Law Periods: One of the fundamental laws of planetary motion
is that the square of a planet’s orbital period around the Sun is directly
proportional to the cube of its mean distance from the Sun. This relationship
holds true for circular orbits as well. It is important to note that the force
of gravity acts as the centripetal force for the circular motion. Therefore, the
planet’s acceleration is always directed towards the center of the orbit. This
allows us to use the principles of circular motion to derive this relationshi:

GMm

r2 = m
v2

r
. (5.13)

Then replacing the speed v with 4πr/T , where T is the rotational period (the
time for a full orbit), we obtain:

T 2 = ( 4π2

GM
)r3. (5.14)

The same outcome can be achieved for orbits that are elliptical, where the
radius r is substituted with the semi-major axis a. The constant ratio between
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T 2 and a3 is determined by the quantity 4π2/GM , which applies to all planets
orbiting the Sun. This relationship is confirmed by the data presented in Table
4.1. By measuring T and a for an orbiting body, we can calculate the mass of
the central body, regardless of the orbiting body’s mass. It should be noted that
this method does not provide any information about the mass of the orbiting
body itself.

Planet Semi-major Axis (1010 m) Period (yr) T 2/a3 (10−34 yr2

m3 )
Mercury 5.79 0.241 2.99
Venus 10.8 0.615 3.00
Earth 15.0 1.00 2.96
Mars 22.8 1.88 2.98

Jupiter 77.8 11.9 3.01
Saturn 143 29.5 2.98
Uranus 287 84.0 2.98

Neptune 450 164.8 2.99
Pluto 591 247.7 2.99

Table 5.1: Table of Planetary Data

5.7 Velocities in Different Orbits in Celestial Mechanics

In celestial mechanics, the motion of a celestial body is often described in terms
of its orbit around another celestial body. There are four types of conic section
orbits: circular, elliptical, parabolic, and hyperbolic. Each orbit has a specific
set of characteristics, including its velocity and energy.

Circular Orbit

A circular orbit is a special case of an elliptical orbit where the semi-major
axis a is equal to the radius r. Kepler’s third law states that the square of the
orbital period T is proportional to the cube of the semi-major axis a:

T 2 = 4π2

GM
a3. (5.15)

The velocity of a circular orbit can be derived by equating the centripetal force
Fc with the gravitational force Fg:

Fc = Fg, (5.16)

which can be written as:

mv2

r
= GMm

r2 . (5.17)

Simplifying this expression, we obtain the velocity of a circular orbit:

v =
√

GM

r
. (5.18)
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Elliptical Orbit

An elliptical orbit is described by the semi-major axis a and the eccentricity e,
where e is the ratio of the distance between the foci of the ellipse to the length
of the major axis. Kepler’s second law states that the area swept out by the
radius vector in a given time is constant, which implies that the speed of the
orbiting body varies along the orbit.

We can derive the velocity of an elliptical orbit by using the conservation of
angular momentum, which states that the product of the mass m, the velocity
v, and the distance r from the center of mass to the orbiting body is constant:

mvr = h, (5.19)

where h is the specific angular momentum. We can express h in terms of the
semi-major axis a and the eccentricity e:

h =
√

GMa(1 − e2). (5.20)

Using Kepler’s second law, we can express the speed v at any point in the orbit
as:

v = h

r

1
1 + e cos θ

, (5.21)

where θ is the true anomaly, which is the angle between the position vector of
the orbiting body and the pericenter of the orbit.
We can simplify this expression by expressing the distance r in terms of the
semi-major axis a and the eccentricity e:

r = a(1 − e2)
1 + e cos θ

. (5.22)

Substituting this expression into the equation for the velocity, we obtain the
velocity of an elliptical orbit:

v =

√
GM

(
2
r

− 1
a

)
=
√

2GM

r
− GM

a
. (5.23)

Parabolic Orbit

A parabolic orbit is an orbit in which the distance between the two bodies
approaches infinity. The velocity of a parabolic orbit can be derived using the
concept of specific energy, which is the sum of the kinetic and potential energy
per unit mass of the orbiting body. For a parabolic orbit, the specific energy is
zero, which means that the kinetic energy is equal in magnitude to the potential
energy. Thus, the total energy is also zero.

Using the conservation of energy, we can equate the kinetic energy to the
negative potential energy:

1
2mv2 = −GMm

r
. (5.24)

Solving for the velocity, we obtain the velocity of a parabolic orbit:
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v =
√

2GM

r
. (5.25)

In conclusion, the velocity of conic section orbits can be derived using the
principles of classical mechanics and the laws of gravity. Circular orbits have
a constant velocity, while elliptical orbits have varying speeds along the orbit.
Parabolic and hyperbolic orbits have specific energies that result in unique
velocities. By understanding the velocity of conic section orbits, we can better
understand the motion of celestial objects and their interactions with each
other.
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CHAPTER 6

Practice problems

1. The luminosity of the Sun is L = 3.85 × 1026 W . If the distance of the Earth
from Sun is equal to 1 AU . Determine what is the flux that Earth receives from
Sun.(1AU = 1.496 × 1011 m)
Solution The flux (or intensity) that the Earth receives from the Sun can
be calculated using the inverse square law of radiation, which states that the
intensity of radiation decreases with the square of the distance from the source.
The flux at a distance r from a source with luminosity L is given by:

F = L

4πr2 ,

where F is the flux received per unit area.
Substituting the given values, we get:

F = 3.85 × 1026 W

4π(1.496 × 1011 m)2

Simplifying this expression, we get:

F = 1361 W/m2

Therefore, the flux that the Earth receives from the Sun is 1361 W/m2. This
quantity is known as the solar constant and is an important parameter in
climate science and solar energy applications.

2. Determine the brightness of a star with the magnitude of 2. You can use
Sun as the known star to compare. (The apparent magnitude of our Sun is
-26.8)
Solution The magnitude system used to measure the brightness of stars is
logarithmic, meaning that a difference of 1 magnitude corresponds to a factor
of 2.512 in brightness.

the apparent magnitude of the Sun (m⊙ = −26.8) as a reference, we can
calculate the ratio of the brightness of the star to the brightness of the Sun:

L⋆

L⊙
= 2.512m⊙−m⋆ ,

where L⋆ and L⊙ are the luminosities of the star and the Sun, respectively, and
m⋆ is the apparent magnitude of the star.
Plugging in the values, we get:
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L⋆

L⊙
= 2.512−26.8−2 ≈ 3.98 × 10−10.

Therefore, the star is about 3.98 × 10−10 times as bright as the Sun.
To convert this ratio to a measure of brightness (flux), we can use the formula:

F⋆

F⊙
= L⋆

4πd2
⋆L⊙

where F⋆ and F⊙ are the fluxes (energy per unit area per unit time) received
from the star and the Sun, respectively, and d⋆ is the distance to the star.

that the star is at the same distance from us as the Sun (d⋆ = 1 AU
= 1.496 × 1011 m), we can plug in the values and solve for F⋆:

F⋆

F⊙
= 3.98 × 10−10

4π(1.496 × 1011)2 ≈ 4.38 × 10−5

Therefore, the star has a flux (brightness) of about 4.38 × 10−5 times that of
the Sun at Earth’s distance.

3. Determine the limiting magnitude of an 8-inch telescope.
Solution The limiting magnitude of a telescope is the faintest magnitude of a
star that can be detected by the telescope. It depends on several factors, such
as the aperture of the telescope, the light pollution in the observing area, and
the sensitivity of the detector (e.g., the eye or a camera).
For an 8-inch telescope, the limiting magnitude can be estimated using the
formula:

me − mt = −5 log Dt

De
, ,

where mt is the limiting magnitude, Dt is the diameter of the telescope, and
De = 6 mm is the diameter of the pupil. This formula assumes a dark observing
site with little or no light pollution.
Substituting D = 8 × 25 mm , we get:

mt = 6.5 + 5 log
(

8 × 25
6

)
= 14.1

Therefore, the limiting magnitude of an 8-inch telescope is approximately
mlimit = 14.1. This means that the telescope can detect stars with an apparent
magnitude of 14.1 or brighter.

4. The Ca , H and K lines have rest wavelengths of λrest = 3968.5 Å and
3933.6 Å respectively. In the spectrum of a galaxy in the cluster Abell 2065
(a.k.a. the Corona Borealis Cluster), the observed wavelengths of the two lines
are λobs = 4255.0 Å and 4217.6 Å respectively.

(a)What is the redshift z of the galaxy?
(b)What is the distance to the galaxy?

Solution (a) The redshift z of a galaxy can be calculated using the formula:

z = λobs − λrest

λrest
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For the Ca II H line, we have:

zH = λobs,H − λrest,H

λrest,H
= 4255.0; Å − 3968.5; Å

3968.5; Å
= 0.072.

For the Ca II K line, we have:

zK = λobs,K − λrest,K

λrest,K
= 4217.6; Å − 3933.6; Å

3933.6; Å
= 0.072.

Therefore, the redshift of the galaxy is z = 0.072.
(b) To calculate the distance to the galaxy, we can use Hubble’s law, which
relates the recessional velocity of a galaxy to its distance:

v = H0d,

where v is the recessional velocity, d is the distance, and H0 is the Hubble
constant. The recessional velocity can be calculated from the redshift using the
formula:

v = cz,

where c is the speed of light. Therefore, we have:

d = v

H0
= cz

H0

The current value of the Hubble constant is a matter of debate and has been
measured to be around 73; km/s/Mpc by some recent studies. Using this value,
we can calculate the distance to the galaxy as:

d = cz

H0
= (73 km/s/Mpc)(0.072)(3.086 × 1019 km/Mpc)

1 s = 168 Mpc

Therefore, the distance to the galaxy is d = 168 Mpc.

5. We are making an observation on 1st day of February 2022. We observe that
Mars is in opposition; at the same time, we see that Jupiter is also in western
quadrature:

(a) Determine the date of the next conjunction of Mars.
(b) Determine the date of the next opposition of Jupiter.
(c) Find the distance of Mars and Jupiter on February 1, 2022.
(d) Determine the date of the next opposition of Mars and Jupiter.
(e) What is the angle of Earth-Mars-Jupiter on the next opposition of

Jupiter?
(f) Discuss the situation when all three planets are on one side of the Sun

on a line. This mean that Mars and Jupiter are going to be in opposition with
Earth at the same time. When do you think this happens?
Solution (a) The next conjunction of Mars will occur when Mars, Earth, and
Sun are aligned in a straight line with Mars being on the same side of the Sun
as Earth. The time between two such alignments is the synodic period of Mars.
The synodic period of Mars is approximately 780 days. Therefore, the next
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conjunction of Mars will occur after half of the synodic period, which is 390
days from the date of the observation.
(b) The synodic period of Jupiter is the time it takes for Jupiter to return to the
same relative position with respect to Earth and the Sun. Since we know that
Jupiter is currently in western quadrature with Earth, we can use the synodic
period to determine when the next opposition will occur.

synodic period of Jupiter is approximately 398.9 Earth days. To find the
time between the current western quadrature and the next opposition, we need
to find the difference between the current phase angle (i.e., the angle between
the Sun-Jupiter line and the Sun-Earth line) and 180 degrees, which is the angle
between the Sun-Jupiter line and the Earth-Jupiter line at opposition.

western quadrature, the elongation angle is 90 degrees. Therefore, the time
between western quadrature and opposition is:

∆t = cos−1( 1 AU
5.2 AU )

360 × 398.9 days = 87.44 days

6. The time interval between two successive oppositions of Mars is 779.9 days.
Calculate the semi-major axis of Mars’ orbit.
Solution First, we can use the given time interval between two successive
oppositions of Mars to find the synodic period Ps:

Ps = 1
1

PMars
− 1

PEarth

where PMars is the orbital period of Mars and PEarth is the orbital period of
Earth.
The orbital period of Earth is approximately 365.25 days, and we are given
that the time interval between two successive oppositions of Mars is 779.9 days.
Therefore, we can solve for the synodic period:

Ps = 1
1

PMars
− 1

365.25
= 779.9 days

Solving for PMars:

1
PMars

= 1
365.25 + 1

Ps

PMars = 1
1

365.25 + 1
Ps

PMars = 1
1

365.25 + 1
779.9

≈ 687 days

Now, we can use the formula for semi-major axis to solve for a:

a =
(

GP 2

4π2

)1/3

=
(

6.674 × 10−11 m3/kg/s2 × (687 days × 24 hours/day × 3600 s/hour)2

4π2

)1/3

a ≈ 2.28 × 1011 m
Therefore, the semi-major axis of Mars’ orbit is approximately 2.28 × 1011

meters, which is equal to 1.52 AU
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7. The quasar SDSS 1030 + 0524 produces a hydrogen emission line of
wavelength λrest = 121.6 nm. On Earth, this emission line is observed to have
a wavelength of λobs = 885.2 nm:

(a) What is the redshift of this quasar?
(b) Determine the radial velocity of the quasar.
(c) Determine the distance of this quasar.

Solution (a) Using the formula z = λobs−λrest

λrest
, we have:

z = 885.2 nm−121.6;nm
121.6 nm ≈ 6.266

Therefore, the redshift of this quasar is z = 6.266.
(b) The radial velocity of the quasar can be calculated using the formula v = cz,
where c is the speed of light. Substituting the values, we get:

v = (2.998 × 108 m/s) × 6.266 ≈ 1.88 × 109 m/s
Therefore, the radial velocity of the quasar is v ≈ 1.88 × 109 m/s.
(c) We can use the Hubble’s law to estimate the distance of the quasar:

H0 = 73.3 (km/s)/Mpc
v = H0 × d

where d is the distance to the quasar. Converting v to meters per second and
H0 to meters per second per meter, we get:

v = 1.88 × 109 m/s
H0 = 73.3 (km/s)/Mpc ≈ 2.39 × 10−18 (m/s)/m

Substituting the values, we get:
d = v

H0
≈ 1.88×109 m/s

2.39×10−18 (m/s)/m ≈ 7.87 × 1027 m

Therefore, the distance to the quasar is d ≈ 7.87 × 1027 m.

8. Solve completely the spherical triangle ABC, and find the area of the
triangles: (assume R=1)

(a) a = 34◦ 46′ , b = 27◦ 22′ , C = 72◦ 31′

(b) b = 98◦ 18′ , C = 24◦ 49′ , A = 68◦ 36′

(c) a = 14◦ 03′ , b = 53◦ 32′ , c = 124◦ 14′

(d) A = 23◦ 32′ , B = 102◦ 38′ , C = 34◦ 44′

Solution To solve a spherical triangle completely, we need to find all three
sides and all three angles. We will use the following formulas for the spherical
law of cosines and sines:
Law of cosines:

cos a = cos b cos c + sin b sin c cos A

cos b = cos a cos c + sin a sin c cos B

cos c = cos a cos b + sin a sin b cos C

Law of sines:
sin a

sin A
= sin b

sin B
= sin c

sin C

The area of a spherical triangle can be found using the following formula:

Area = R2 · (A + B + C − π),

where A, B, and C are the angles of the triangle.
(a) a = 34◦; 46′; , b = 27◦; 22′; , C = 72◦; 31′ We have two sides and an angle
opposite one of the sides. Using the law of cosines, we can find the third side
and then use the law of sines to find the other two angles.

47



6. Practice problems

cos c = cos a cos b + sin a sin b cos C

cos(34◦46′) cos(27◦22′) + sin(34◦46′) sin(27◦22′) cos(72◦31′) ≈ 0.8096

Therefore, cos−1(0.8096) ≈ 35◦22′38′′ is the length of side c.
Using the law of sines:

sin a

sin A
= sin c

sin C
⇒ sin A = sin a sin C

sin c
≈ 0.6709

sin b

sin B
= sin c

sin C
⇒ sin B = sin b sin C

sin c
≈ 0.5205

Therefore, sin−1(0.6709) ≈ 42◦47′11′′ is the measure of angle A, and
sin−1(0.5205) ≈ 31◦26′55′′ is the measure of angle B.
To find the area, we can use the formula:

Area = R2 · (A + B + C − π) ≈ 0.0042

(b) b = 98◦ 18′; , C = 24◦ 49′; , A = 68◦ 36′ We have one side and two angles
opposite to it. Using the law of sines, we can find the other two sides, and then
use the law of cosines to find the remaining angle.
Let a be the side opposite to angle A, and c be the side opposite to angle C.
Then, from the law of sines:

sin a

sin A
= sin c

sin C
⇒ sin a = sin A sin C

sin b
≈ 0.9907

sin c

sin C
= sin b

sin B
⇒ sin c = sin C sin b

sin B
≈ 0.6478

Now, using the law of cosines to find the third side:

cos b = cos a cos c + sin a sin c cos B

⇒ cos B = cos b − cos a cos c

sin a sin c
≈ 0.4969

⇒ B = cos−1(0.4969) ≈ 60◦44′12′′

Finally, to find the remaining angle:

A + B + C = π ⇒ A = π − B − C ≈ 46◦34′9′′

To find the area, we can use the formula:

Area = R2 · (A + B + C − π) ≈ 0.0806

(c) a = 14◦ 03′ , b = 53◦ 32′ , c = 124◦ 14′ We have all three sides. Using the
law of cosines, we can find all three angles.

cos A = cos a − cos b cos c

sin b sin c
≈ 0.1915

cos B = cos b − cos a cos c

sin a sin c
≈ −0.6224
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cos C = cos c − cos a cos b

sin a sin b
≈ −0.8295

Since all three cosines are negative, we have an obtuse triangle. Therefore, we
have to use the supplementary formula for each angle:

A = π − cos−1(cos A) ≈ 154◦20′35′′

B = π − cos−1(cos B) ≈ 122◦29′55′′

C = π − cos−1(cos C) ≈ 122◦15′30′′

To find the area, we can use the formula:

Area = R2 · (A + B + C − π) ≈ 0.0245

(d) A = 23◦ 32′ , B = 102◦ 38′ , C = 34◦ 44′ We have all three angles. Using
the law of sines, we can find all three sides.
Let a be the side opposite to angle A, b be the side opposite to angle B, and c
be the side opposite to angle C. Then, from the law of sines:

a

sin A
= b

sin B
= c

sin C

Thus, we have:

a = sin A

sin C
c ≈ 0.4501

b = sin B

sin C
c ≈ 1.2467

c = sin C

sin C
c = R ≈ 1

To find the area, we can use the formula:

Area = R2 · (α + β + γ − π) = R2 · (A + B + C − π) ≈ 0.2796

9. Two cities A and B on the same parallel of latitude ϕ = 43◦ 39′ N are
127◦22′ apart in longitude. Calculate in kilometers:

(a)their distance apart along the parallel. (On the small circle between the
cities with same latitude)

(b)the great circle distance AB.
(c)Determine the highest latitude of the great circle between two cities.

Solution We can use the following formulas for the calculations:
For a sphere with radius R, the length L of a small circle with radius r and
central angle θ is L = Rθ. The great circle distance d between two points on a
sphere with radius R and colatitudes ϕ1 and ϕ2 and difference in longitudes
∆λ is d = R cos−1(sin ϕ1 sin ϕ2 + cos ϕ1 cos ϕ2 cos ∆λ).
(a) To calculate the distance between two points along a parallel of latitude,
we can assume that the Earth is a sphere with radius R = 6, 371 km and use
the formula L = Rθ, where θ is the central angle between the two points
on the sphere. The distance between the two cities along the parallel is
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simply the arc length of the parallel between the two longitudes, which is
θ = 127◦22′

360◦ · 2πR cos ϕ ≈ 14, 105 km.
(b) To calculate the great circle distance between the two cities, we can use
the formula d = R cos−1(sin ϕ1 sin ϕ2 + cos ϕ1 cos ϕ2 cos ∆λ), where ϕ1 = ϕ2 =
43◦39′ N and ∆λ = 127◦22′. Then, we have:

d = 6, 371 km cos−1(sin 43◦39′ N sin 43◦39′ N+cos 43◦39′ N cos 43◦39′ N cos 127◦22′)

d ≈ 9, 325 km

Therefore, the great circle distance between the two cities is approximately
9, 325 km.

10. An observer is tracking Rigel δR = −8◦ 12′, αR = 5h 14m in Toronto:
(ϕT oronto = 43.65◦ N)

(a) What is the maximum altitude of this star in Toronto’s sky?
(b) What is the star’s Azimuth at rise? What about the setting Azimuth?
(c) What is the star’s Azimuth and Hour angle when its altitude is h = 8◦?
(d) What is the star’s altitude and Azimuth when t = 1h 53m?
(e)What angle does the star’s path make with horizon at rise/set?

11. Determine the ecliptic coordinates of Rigel δR = −8◦ 12′, αR = 5h 14m.

12. Show that the point on the horizon at which a star rises is:

sin−1(sec ϕ sin δ)

Solution To solve this problem, we will need to use some basic trigonometric
identities and the geometry of the celestial sphere. Let’s begin by defining some
terms:

ϕ is the observer’s latitude, measured in degrees or radians. δ is the star’s
declination, measured in degrees or radians. H is the star’s hour angle, measured
in hours or radians. h is the altitude of the star, measured in degrees or radians.
Using these definitions, we can write the following equations:

sin h = sin ϕ sin δ + cos ϕ cos δ cos H

cos H = sin h − sin ϕ sin δ

cos ϕ cos δ

, let’s consider the point on the horizon at which the star rises. This point
is defined by h = 0, which means that:

sin ϕ sin δ + cos ϕ cos δ cos H = 0

for cos H, we get:

cos H = − sin ϕ sin δ

cos ϕ cos δ

the identity sec θ = 1
cos θ , we can write this as:
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cos H = − sin ϕ sin δ

cos ϕ cos δ
= − sin ϕ

cos ϕ
· sin δ

cos δ
= − tan ϕ tan δ

the inverse sine of both sides, we get:

H = sin−1(− tan ϕ tan δ)

we know that the star rises at the point on the horizon where H = 0, so we
can set H = 0 and solve for the latitude of the observer:

0 = sin−1(− tan ϕ tan δ)

tan ϕ tan δ = 0

tan ϕ = 0 or tan δ = 0

The first case, tan ϕ = 0, corresponds to an observer at the equator (ϕ = 0)
and is not interesting for this problem. The second case, tan δ = 0, corresponds
to a star at the celestial equator (δ = 0) and is also not interesting for this
problem. Therefore, we can assume that tan ϕ ̸= 0 and tan δ ≠ 0, which allows
us to write:

sin−1(− tan ϕ tan δ) = sin−1
(

− sin ϕ sin δ

cos ϕ cos δ

)
= sin−1(sec ϕ sin δ)

is the desired result, which shows that the point on the horizon at which a
star rises is given by sin−1(sec ϕ sin δ).

13. We have the coordinates of Vega δV = 38◦ 47′, αV = 18h 36m. A person in
Toronto (ϕT oronto = 43.65◦ N) is observing this star:

(a) Determine the hour angle of Vega when it rise/set.
(b) What is the Azimuth of rise and set of Vega in Toronto’s horizon?
(c) Determine its maximum altitude in Toronto.
(d) Determine the total time Vega is above horizon.
(e) On which date does Vega rise at the same time as the Sun in Toronto?

14. The parallax angle of a star is measured to be 0.4 arcseconds. What is the
distance to the star in parsecs? Assume that the distance to the star is much
greater than the radius of the Earth’s orbit.
Solution The parallax angle θ is related to the distance d to the star by the
formula:

θ = 1 AU
d

where 1 AU is the mean distance between the Earth and the Sun, which is
approximately 1.496 × 1011 meters.
Converting the parallax angle to radians:

θ = 0.4 arcseconds × π
180×3600 radians per arcsecond = 1.184 × 10−6 radians

Substituting into the formula, we get:
d = 1 AU

θ = 1.496×1011 m
1.184×10−6 = 1.262 parsecs

Note that the assumption that the distance to the star is much greater than
the radius of the Earth’s orbit is necessary to ensure that the parallax angle is
small enough to measure accurately.
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15. Star A has an apparent magnitude of 3.5 and a parallax of 0.05 arcseconds.
Star B has an apparent magnitude of 2.0 and a parallax of 0.02 arcseconds.
Which star is closer to Earth, and by how much in parsecs?
Solution We can use the formula for converting parallax to distance:

d = 1
p ,

where d is the distance in parsecs and p is the parallax in arcseconds.
For Star A, p = 0.05 arcseconds, so dA = 1

0.05 = 20 parsecs.
For Star B, p = 0.02 arcseconds, so dB = 1

0.02 = 50 parsecs.
Since Star A is farther away from Earth than Star B, it must be dimmer due
to the inverse square law of light. We can use the formula:

m2 − m1 = −2.5 log10

(
F2
F1

)
,

where m1 and m2 are the apparent magnitudes of Star A and Star B, respectively,
and F1 and F2 are their corresponding fluxes. We can assume that their intrinsic
brightnesses are equal, so their flux ratio is simply the ratio of their distances
squared:

F2
F1

=
(

d1
d2

)2
.

Plugging in the values, we get:
m2 − m1 = −2.5 log10

(
d2

1
d2

2

)
,

m2 − m1 = −2.5 log10

(
202

502

)
= −1.95.

Therefore, Star A is dimmer than Star B by 1.95 magnitudes.

16. A star has an apparent magnitude of mv = 3.5 and a parallax of 0.03′′.
(a) Calculate the star’s distance from Earth in parsecs.
(b) Calculate the star’s absolute magnitude.
(c) If the star has a luminosity of 102L⊙, what is its radius in units of the

Sun’s radius?
Solution To solve this problem, we will use the formula:

mv − Mv = 5 log d
10

where mv is the apparent magnitude, Mv is the absolute magnitude, d is the
distance in parsecs, and L⊙ is the luminosity of the Sun.
We will also use the formula:

L = 4πR2σT 4

where L is the luminosity, R is the radius, σ is the Stefan-Boltzmann constant,
and T is the effective temperature. We can assume that the effective temperature
of the star is similar to that of the Sun, T = 5778 K.
(a) The distance d in parsecs is given by:

d = 1
p

where p is the parallax in arcseconds. Therefore, we have:
d = 1

0.03 = 33.33 pc
(b) To find the absolute magnitude Mv, we can rearrange the formula:

Mv = mv − 5 log d
10 Substituting in the values we have:

Mv = 3.5 − 5 log 33.33
10 = −0.32

(c) To find the radius R of the star in units of the Sun’s radius, we can use the
formula for luminosity:

L = 4πR2σT 4

Rearranging for R, we have:
R =

√
L

4πσT 4
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Substituting in the values we have:
R =

√
102L⊙

4πσ(5778 K)4 = 6.48R⊙

Therefore, the star has a radius of 6.48 times the radius of the Sun.

17. A star has an apparent magnitude of mv = 2.5 and a parallax of p = 0.05
arcseconds. Assuming that the star’s absolute magnitude is Mv = 0.5, calculate:

(a) The distance to the star in parsecs.
(b) The luminosity of the star in solar luminosities.

Solution (a) The distance to the star can be calculated using the formula:
d = 1

p

Substituting p = 0.05 arcseconds, we get:
d = 1

0.05 arcsec = 20 pc
Therefore, the distance to the star is 20 parsecs.
(b) The luminosity of the star can be calculated using the formula:

L = 100.4(M⊙−Mv), L⊙
where M⊙ = 4.83 is the absolute magnitude of the Sun, and L⊙ = 3.828×1026 W
is the luminosity of the Sun.
Substituting Mv = 0.5 and simplifying, we get:

L = 100.4(4.83−0.5), L⊙ = 100.3, L⊙
Therefore, the luminosity of the star is 100.3 times the luminosity of the Sun.

18. A telescope has a focal length of 1000mm and an eyepiece with a focal length
of 20mm. What is the magnification of the telescope? If the telescope is used
to observe an object at a distance of 2000m, what is the angular magnification?
Solution The magnification of the telescope is given by:

M = fobj

feyepiece

where fobj is the focal length of the objective lens/mirror, and feyepiece is the
focal length of the eyepiece.
Substituting the given values, we get:

M = 1000
20 = 50

Therefore, the magnification of the telescope is 50.
The angular magnification is given by:

Mang = M × θobj

θeyepiece

where θobj is the angular size of the object as seen through the objective
lens/mirror, and θeyepiece is the angular size of the image formed by the eyepiece.
The angular size of an object is given by:

θ = d
D

where d is the actual size of the object, and D is the distance from the observer
to the object.
Substituting the given values, we get:

θobj = 0.01
2000 = 5 × 10−6 radians

The angular size of the image formed by the eyepiece is given by:
θeyepiece = deyepiece

feyepiece

where deyepiece is the distance between the eyepiece and the image formed by
the objective lens/mirror.
Assuming that the telescope is in normal adjustment, we have:

deyepiece ≈ fobj

Substituting the given values, we get:
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θeyepiece = 25×10−3

20 = 1.25 × 10−3 radians
Substituting these values into the formula for angular magnification, we get:

Mang = 50 × 5×10−6

1.25×10−3 ≈ 0.2
Therefore, the angular magnification of the telescope when observing an object
at a distance of 2000m is approximately 0.2 radians.

19. A telescope has a focal length of 2000 mm and a plate scale of 1 arcsecond
per pixel. If we want to image the planet Jupiter, which has an angular size
of approximately 50 arcseconds, what should be the size of the imaging sensor
to capture the entire planet? What is the approximate pixel resolution of the
image? Assume that the telescope is diffraction limited.
Solution The plate scale of a telescope is defined as the angular size of one
pixel in arcseconds per millimeter. In other words:

Plate scale = 206,265
focal length×pixel size

where the focal length is in millimeters and the pixel size is in millimeters.
We can rearrange this equation to solve for the pixel size:

Pixel size = 206,265
focal length×plate scale

Plugging in the given values, we get:
Pixel size = 206,265

2000 mm×1 arcsecond/pixel ≈ 0.103 mm/pixel
To capture the entire planet Jupiter, we need an imaging sensor that is at least
50 arcseconds across. Since we know the plate scale and pixel size, we can
calculate the required number of pixels:

Number of pixels = Angular size
Plate scale×Pixel size

Plugging in the values, we get:
Number of pixels = 50 arcseconds

1 arcsecond/pixel×0.103 mm/pixel ≈ 485 pixels
Note that this is only an approximate value, and the actual number of pixels
needed may be higher due to other factors such as image cropping and
interpolation.
Finally, we can calculate the approximate pixel resolution of the image by
dividing the angular size of one pixel by the distance to Jupiter:

Pixel resolution = Plate scale
Distance to Jupiter

Since Jupiter is about 5.2 astronomical units (AU) from Earth on average, we
have:

Pixel resolution = 1 arcsecond/pixel
5.2 AU ≈ 0.01 arcseconds/pixel

This means that features on Jupiter that are at least 0.01 arcseconds in size
can be resolved by the telescope.

20. A telescope with a focal length of 1000 mm is used to observe Jupiter. The
angular diameter of Jupiter is 40 arcseconds.

a) What is the plate scale of the telescope in arcseconds/mm?
b) If the telescope is equipped with an eyepiece with a magnification of 100x,

what is the apparent diameter of Jupiter in the eyepiece?
c) If Jupiter has an average distance from the Sun of 5.2 astronomical units

(AU), what is its actual diameter in kilometers?
Solution a) The plate scale of a telescope is the angular size of an object in
the sky per unit distance on the detector or the focal plane. It is given by the
formula:
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Plate Scale = Angular Diameter of Object
Focal Length of Telescope

Substituting the given values, we get:

Plate Scale = 40′′

1000 mm = 0.04′′/mm

b) The apparent diameter of Jupiter in the eyepiece is given by the formula:

Apparent Diameter in Eyepiece = Angular Magnification×Angular Diameter of Object

The angular magnification of a telescope is given by the formula:

Angular Magnification = Focal Length of Objective
Focal Length of Eyepiece

Since the focal length of the objective is 1000 mm and the magnification of the
eyepiece is 100x, the focal length of the eyepiece is:

Focal Length of Eyepiece = Focal Length of Objective
Magnification = 1000 mm

100 = 10 mm

Substituting the values, we get:

Apparent Diameter in Eyepiece = 100 × 40′′ = 4000′′

c) The actual diameter of Jupiter can be calculated using the formula:

Actual Diameter = Apparent Diameter
Plate Scale × Distance

The distance to Jupiter can be calculated using its average distance from the
Sun, which is 5.2 AU. One AU is defined as the mean distance between the
Earth and the Sun, which is approximately 149.6 million kilometers.
Therefore, the distance to Jupiter is:

Distance = 5.2 AU × 149.6 million km/AU = 778.72 million km

Substituting the given values, we get:

Actual Diameter = 4000′′

0.04′′/mm × 1000 mm/km × 778.72 million km ≈ 139, 822 km

Therefore, the actual diameter of Jupiter is approximately 139, 822 km.

21. A telescope with a focal length of 1200 mm and a plate scale of 0.5
arcseconds/mm is used to observe the full moon. The field of view of the
telescope is 30 arcminutes. The magnitude of the moon is -12.7.

a) What is the apparent size of the full moon in the telescope’s field of view?
b) How many pixels will the full moon occupy in an image taken with a

camera that has a pixel size of 5 microns?
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Solution a) The plate scale of the telescope is given by:
PlateScale = Angular Diameter/Focal Length

where the angular diameter of an object is the angle it subtends at the observer’s
eye. The angular diameter of the full moon is approximately 0.5 degrees or 30
arcminutes. Therefore, the plate scale of the telescope is:

PlateScale = 30 arcmin/1200 mm = 0.025 arcmin/mm

The apparent size of the full moon in the telescope’s field of view is given by:
Apparent Size = Field of V iew/P late Scale

Substituting the given values, we get:
Apparent Size = 30 arcmin/0.025 arcmin/mm = 1200 mm

Therefore, the apparent size of the full moon in the telescope’s field of view is
1200 mm.

) The number of pixels that the full moon will occupy in an image taken
with a camera that has a pixel size of 5 microns is given by:

Number of P ixels = (Apparent Size/P ixel Size)2

Substituting the values, we get:
Number of P ixels = (1200 mm/5 microns)2 = 5.76 × 1013 pixels

Therefore, the full moon will occupy approximately 5.76 × 1013 pixels in the
image.

22. A small asteroid is in an elliptical orbit around the Sun. The asteroid has
a semimajor axis of 2.5 AU and an eccentricity of 0.3.

a) What is the period of the asteroid’s orbit?
b) What is the asteroid’s speed when it is closest to the Sun (at perihelion)?
c) What is the asteroid’s speed when it is farthest from the Sun (at aphelion)?
d) What is the asteroid’s orbital energy?

Solution a) The period T of an object in an elliptical orbit can be calculated
using Kepler’s third law:

T 2 = 4π2

GM
a3

where G is the gravitational constant, M is the mass of the central object (in
this case, the Sun), and a is the semimajor axis of the orbit. Substituting the
given values, we get:

T 2 = 4π2

(6.674 × 10−11 m3/kg s2)(1.989 × 1030 kg)
(2.5 AU)3

Converting AU to meters, and taking the square root, we get:

T = 4.33 years

Therefore, the period of the asteroid’s orbit is approximately 4.33 years.
) At perihelion, the asteroid is closest to the Sun, and therefore its speed is

at a maximum. The speed of an object in an elliptical orbit can be calculated
using the following equation:
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v2 = GM

(
2
r

− 1
a

)
where r is the distance between the asteroid and the Sun, and a is the semimajor
axis of the orbit. At perihelion, the distance r is equal to (1 − e)a, where e is
the eccentricity of the orbit. Substituting the given values, we get:

vperi =

√
(6.674 × 10−11 m3/kg s2)(1.989 × 1030 kg)

(
2

(1 − 0.3)(2.5 AU) − 1
2.5 AU

)
Converting AU to meters, we get:

vperi = 41.1 km/s

Therefore, the asteroid’s speed at perihelion is approximately 41.1 km/s.
) At aphelion, the asteroid is farthest from the Sun, and therefore its speed

is at a minimum. Using the same equation as in part (b), we can calculate the
speed of the asteroid at aphelion:

vapo =

√
(6.674 × 10−11 m3/kg s2)(1.989 × 1030 kg)

(
2

(1 + 0.3)(2.5 AU) − 1
2.5 AU

)
Converting AU to meters, we get:

vapo = 24.4 km/s

Therefore, the asteroid’s speed at aphelion is approximately 24.4 km/s.
) The orbital energy of an object in an elliptical orbit can be calculated

using the following equation:

E = −GMm

2a

where m is the mass of the asteroid. Substituting the given values, we get:

E = − (6.674 × 10−11 m3/kg s2)(1.989 × 1030 kg)(m)
2(2.5 AU)(1.496 × 1011 m/AU)

Converting AU to meters, and substituting m with the mass of the asteroid, we
get:

E = − (6.674 × 10−11 m3/kg s2)(1.989 × 1030 kg)(5 × 1010 kg)
2(2.5 AU)(1.496 × 1011 m/AU)

Simplifying, we get:

E = −6.35 × 1022 J

Therefore, the asteroid’s orbital energy is approximately −6.35 × 1022 J.
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APPENDIX A

Math Appendix

In this appendix, we discuss second-degree equations such as:

x2 + y2 = 1 y = x2 + 1 x2

9 + y2

4 = 1 x2 − y2 = 1

which represents a circle, a parabola, an ellipse, and a hyperbola, respectively.
The graph of such an equation in x and y is the set of all points (x, y) that
satisfy the equation; it gives a visual representation of the equation. Conversely,
given a curve in the xy-plane, we may have to find an equation that represents
it, that is, an equation satisfied by the coordinates of the points on the curve
and by no other point. This is the other half of the basic principle of analytic
geometry formulated by Descartes and Fermat. The idea is that if an algebraic
equation can represent a geometric curve, then the rules of algebra can be used
to analyze the geometric problem.

A.1 Circles

As an example of this type of problem, let’s find an equation of the circle with
radius r and center (h, k). By definition, the circle is the set of all points P (x, y)
whose distance from the center C(h, k) is r. (See Figure A1.)

Figure A.1: Sample circle

Thus P are on the circle if and only if |PC| = r. From the distance formula,
we have: √

(x − h)2 + (y − k)2 = r,
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or equivalently, squaring both sides, we get

(x − h)2 + (y − k)2 = r2,

This is the desired equation.

Equation of a circle: An equation of the circle with center (h, k) and radius r is

(x − h)2 + (y − k)2 = r2,

In particular, if the center is the origin (0, 0), the equation is

x2 + y2 = r2.

A.2 Parabolas

We regard a parabola as a graph of an equation of the form y = ax2 + bx + c.
Let’s draw the graph of the parabola y = x2. We set up a table of values, plot
points, and join them by a smooth curve to obtain the graph in Figure A2.

x y = x2

0 0
± 1

2
1
4

±1 1
±2 4
±3 9

Figure A.2: Sample parabola

Figure A.3 shows the graphs of several parabolas with equations of the form
y = ax2 for various values of the number a. In each case the vertex, the point
where the parabola changes direction, is the origin. We see that the parabola
y = ax2 opens upward if a > 0 and downward if a < 0 (as in Figure A.3).
Notice that if (x, y) satisfies y = ax2, then so does (−x, y). This corresponds
to the geometric fact that if the right half of the graph is reflected about the
y-axis, then the left half of the graph is obtained. We say that the graph is
symmetric with respect to the y-axis.
The graph of an equation is symmetric with respect to the y-axis if the equation
is unchanged when x is replaced by −x.
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Figure A.3: Graphs of several parabolas with different a values

Figure A.4: different parabolas

Figure A.5: different parabolas

If we interchange x and y in the equation y = ax2, the result is x = ay2, which
also represents a parabola. (Interchanging x and y amounts to reflecting about
the diagonal line y = x.) The parabola x = ay2 opens to the right if a > 0 and
to the left if a < 0. (See Figure A.5.) This time the parabola is symmetric with
respect to the x-axis because if (x, y) satisfies x = ay2, then so does (x, −y).
The graph of an equation is symmetric with respect to the x-axis if the equation
is unchanged when y is replaced by −y.
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A.3 Ellipses

The curve with equation:

x2

a2 + y2

b2 = 1

where a and b are positive numbers, is called an ellipse in standard position.
Equation above is unchanged if x is replaced by −x or y is replaced by −y, so
the ellipse is symmetric with respect to both axes. As a further aid to sketching
the ellipse, we find its intercepts.
The x-intercepts of a graph are the x-coordinates of the points where the
graph intersects the x-axis. They are found by setting y = 0 in the equation of
the graph.
The y-intercepts are the y-coordinates of the points where the graph intersects
the y-axis. They are found by setting x = 0 in its equation.
If we set y = 0 in the equation of ellipse, we get x2 = a2 and so the x-intercepts
are ±a. Setting x = 0, we get y2 = b2, so the y-intercepts are ±b. Using this
information, together with symmetry, we sketch the ellipse in Figure A.6 . If
a = b, the ellipse is a circle with radius a.

Figure A.6: Ellipse with equation x2

a2 + y2

b2 = 1

A.4 Hyperbolas

The curve with equation

x2

a2 − y2

b2 = 1

is called a hyperbola in standard position. Again, Equation above is unchanged
when x is replaced by −x or y is replaced by −y, so the hyperbola is symmetric
with respect to both axes. To find the x-intercepts we set y = 0 and obtain
x2 = a2 and x = ±a. However, if we put x = 0 in above equation, we get
y2 = −b2, which is impossible, so there is no y-intercept. In fact, we obtain:

x2

a2 = 1 + y2

b2 ⩾ 1
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which shows that x2 ⩾ a2 and so |x| =
√

x2 ⩾ a. Therefore we have x ⩾ a
or x ⩽ −a. This means that the hyperbola consists of two parts, called its
branches. It is sketched in Figure A.7.

Figure A.7: Hyperbola with equation x2

a2 − y2

b2 = 1

In drawing a hyperbola it is useful to draw first its asymptotes, which are the
lines y = (b/a)x and y = −(b/a)x shown in Figure A.7. Both branches of the
hyperbola approach the asymptotes; that is, they come arbitrarily close to the
asymptotes.
By interchanging the roles of x and y we get an equation of the form

y2

a2 − x2

b2 = 1

which also represents a hyperbola and is sketched in Figure A.8:

Figure A.8: Hyperbola with equation x2

a2 − y2

b2 = 1
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A.5 Angles

Angles can be measured in degrees or in radians (abbreviated as rad). The
angle given by a complete revolution contains 360◦, which is the same as 2π
rad. Therefore:

π rad = 180◦

and

1rad =
(

180
π

)◦

≈ 57.3◦ 1◦ = π

180rad ≈ 0.017rad

Example 1
(a) Find the radian measure of 60◦. (b) Express 5π/4 rad in degrees.
Solution
(a) From Equation 1 or 2 we see that to convert from degrees to radians we
multiply by π/180. Therefore

60◦ = 60
( π

180

)
= π

3 rad

(b) To convert from radians to degrees we multiply by 180/π. Thus

5π

4 rad = 5π

4

(
180
π

)
= 225◦

In calculus we use radians to measure angles except when otherwise indicated.
The following table gives the correspondence between degree and radian
measures of some common angles.

Degrees 0◦ 30◦ 45◦ 60◦ 90◦ 120◦ 135◦ 150◦ 180◦ 270◦ 360◦

Radians 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π 3π

2 2π

Figure A.9: Sector of a circle with central angle θ

Figure A.9 shows a sector of a circle with central angle θ and radius r subtending
an arc with length a. Since the length of the arc is proportional to the size of
the angle, and since the entire circle has circumference 2πr and central angle
2π, we have:

θ

2π
= a

2πr
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Solving this equation for θ and for a, we obtain:

θ = a

r
a = rθ

Remember that above equations are valid only when θ is measured in radians.
In particular, putting a = r in above equation, we see that an angle of 1 rad is
the angle subtended at the center of a circle by an arc equal in length to the
radius of the circle (see Figure A.10).

Figure A.10: Sector of a circle with its radius equal to the arc

The standard position of an angle occurs when we place its vertex at the origin
of a coordinate system and its initial side on the positive x-axis as in Figure
A.11 . A positive angle is obtained by rotating the initial side counterclockwise
until it coincides with the terminal side. Likewise, negative angles are obtained
by clockwise rotation as in Figure A.11.

Figure A.11: Positive and negative angles

Figure A.12 shows several examples of angles in standard position. Notice
that different angles can have the same terminal side. For instance, the angles
3π/4, −5π/4, and 11π/4 have the same initial and terminal sides because:

3π

4 − 2π = −5π

4
3π

4 + 2π = 11π

4
and 2πrad represents a complete revolution.

Figure A.12: Angles in standard position
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A.6 Trigonometric Identities

Pythagorean Identities

sin2 x + cos2 x = 1
tan2 x + 1 = sec2 x

1 + cot2 x = csc2 x

Sum and Difference Formulas

sin(x ± y) = sin x cos y ± cos x sin y

cos(x ± y) = cos x cos y ∓ sin x sin y

tan(x ± y) = tan x ± tan y

1 ∓ tan x tan y

Double-Angle Formulas

sin 2x = 2 sin x cos x

cos 2x = cos2 x − sin2 x

= 2 cos2 x − 1
= 1 − 2 sin2 x

tan 2x = 2 tan x

1 − tan2 x

Half-Angle Formulas

sin x

2 = ±
√

1 − cos x

2

cos x

2 = ±
√

1 + cos x

2

tan x

2 = sin x

1 + cos x

A.7 Polar Coordinates

In polar coordinates, a point in the plane is represented by an ordered pair
(r, θ), where r is the distance from the origin to the point and θ is the angle
between the positive x-axis and the line segment connecting the origin to the
point, measured counterclockwise.

Conversion from Cartesian to Polar Coordinates

Given a point (x, y) in Cartesian coordinates, we can convert to polar coordinates
as follows:
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A.7. Polar Coordinates

r =
√

x2 + y2

θ = tan−1
(y

x

)
Note that the angle θ must be adjusted to lie in the appropriate quadrant.

Conversion from Polar to Cartesian Coordinates

Given a point (r, θ) in polar coordinates, we can convert to Cartesian coordinates
as follows:

x = r cos θ

y = r sin θ

Position Vector

The position vector in polar coordinates is given by

r = rr̂

where r̂ is the unit vector in the radial direction, given by

r̂ =
(
cos θ, sin θ

)
Velocity Vector

To derive the velocity vector in polar coordinates, we differentiate the position
vector with respect to time:

v = dr
dt

= d

dt
(rr̂) = ṙr̂ + r

dr̂

dt

The time derivative of the unit vector r̂ can be found using the chain rule:

dr̂

dt
= d

dt

(
cos θ, sin θ

)
=
(
− sin θ, cos θ

) dθ

dt
=
(
− sin θ, cos θ

)
θ̇

Substituting this expression into the velocity vector equation, we get

v = ṙr̂ + rθ̇θ̂

where θ̂ is the unit vector in the tangential direction, given by

θ̂ =
(
− sin θ, cos θ

)
69



A. Math Appendix

Acceleration Vector

To derive the acceleration vector in polar coordinates, we differentiate the
velocity vector with respect to time:

a = dv

dt
= (r̈ − rθ̇2)r̂ + (rθ̈ + 2ṙθ̇)θ̂

where r̈ = d2r
dt2 and θ̈ = d2θ

dt2 are the second derivatives of r and θ, respectively.
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