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Instructions:

• This exam comprises 8 problems.

• Read the instructions for each question carefully.

• Please provide legible handwritten answers on separate pieces of paper.

• Show all your work and justify your answers clearly and concisely.

Note: This exam is worth 240 points.
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1 Properties of Sirius and Companion (20 points)

Find the physical characteristics of the star Sirius (α Canis Majoris) and its companion
based on the following observational data:

• The visible yellow stellar magnitude of Sirius is V1 = −1m.46.

• Its primary color index is (B − V )1 = 0m.00.

• The companion star has:

– Apparent magnitude: V2 = +8m.50.

– Color index: (B − V )2 = +0m.15.

• The parallax of Sirius is π = 0′′.375.

• The companion revolves around Sirius with a period of P = 50 years.

• The angular value of the semi-major axis of the orbit is a′′ = 7′′.60.

• The ratio of the distances of both stars to the common center of mass is a2/a1 = 2.3 : 1.

• The absolute stellar magnitude of the Sun in yellow light is given as M�V = +4m.77.
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2 Average Density of a B0V Star (15 points)

Calculate the average density of a main-sequence star of spectral class B0V. The star has an
effective temperature of T = 30, 000 K and a mass of approximately 15M�.

Use known relationships between stellar parameters to estimate its radius and subse-
quently determine the density. The average density ρ is given by

ρ =
3M

4πR3
,

where M is the mass of the star, and R is its radius, which should be determined using
known relationships for star parameters.
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3 Migration Paths of the Ruby-throated Humming-

bird (25 points)

For centuries, humans have observed bird migrations, using them to predict seasonal changes
and understand natural navigation. The Ruby-throated Hummingbird (*Archilochus
colubris*) is one of the most remarkable migratory species, traveling thousands of kilome-
ters each year between North and Central America. Indigenous cultures in North America
regarded the return of hummingbirds as a sign of spring, while in Central America, the bird
was often associated with vitality and endurance.

The Ruby-throated Hummingbird breeds in Toronto (43.7◦N, 79.4◦W ) and migrates
to its wintering grounds in San José, Costa Rica (9.9◦N, 84.1◦W ). Due to the Coriolis
effect and prevailing wind patterns, the path taken by these birds does not follow a straight
line but instead forms an elliptical trajectory, which has been studied by ornithologists.

Through the analysis of tracking data and historical observations, scientists have identi-
fied that this migratory route can be approximated by an ellipse, with one of its foci (F1)
located in Kansas City, USA (39.1◦N, 94.6◦W ). However, the second focus of the elliptical
migration path remains to be determined.

If the major axis of this elliptical migration route is 50◦, answer the following:

(a) Based on the given information, determine the coordinates of the second focus
(F2) of this elliptical trajectory.

(b) Compute the eccentricity of the elliptical migration path, determine the coordinates
of the apsis points (the closest and farthest points to the foci of the ellipse), and find
the conjugate points along the semi-minor axis of the ellipse.

Note: For the purpose of this problem, assume that the Earth’s surface can be approximated
as a perfect sphere with a radius of 6,371 km.
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4 Properties of Kuiper Belt Objects (KBOs) (30 points)

A fraction of the sunlight that is reflected by the objects is called albedo. The remaining
light is absorbed by the body. In the context of the Solar System, Kuiper Belt Objects
(KBOs) have specific albedo values that provide insights into their surface compositions and
structures. The absorbed energy is then re-emitted as thermal radiation. Kuiper belt objects
orbit beyond the outermost planet of the Solar System, Neptune. Therefore, they are very
far from Earth, making their imaging extremely difficult. Most of these objects appear as
point sources that reflect and emit radiation.

(a) An astronomer wants to measure the reflected flux from these celestial bodies. In which
wavelength range should the astronomer observe, and why?

(b) Astronomer X has successfully obtained the reflected flux from these objects, denoted
as FR. This flux represents the amount of energy per unit area per unit time detected
by a ground-based sensor. Suppose the observer measures FR when the object is at
opposition. Derive an expression for FR in terms of the object’s distance from the Sun,
D, the Sun’s luminosity, L, the object’s radius, R (assuming it is spherical), and its
albedo, A.

(c) Astronomer Y has measured the thermal radiation flux emitted by these objects, de-
noted as FE. Derive the required expression for FE using the relation found in part
(b).

(d) In the opposition configuration, the observed KBOs have a proper motion µ =
3 arcsecond/hr relative to distant stars. This motion is solely due to parallax. Using
this information, estimate D and express it in astronomical units (AU).

(e) Based on the results obtained in parts (c) and (d), determine the wavelength at which
astronomer Y observed the emitted radiation.

(f) Suppose both astronomers X and Y know the value of D.

(a) Can astronomer X determine R alone?

(b) Can astronomer Y determine R alone?

They can determine R together by combining their measurements.
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5 Gamma-Ray Bursts (GRBs) in Distant Galaxies

(30 points)

Gamma-ray bursts (GRBs) are among the most energetic explosions in the universe,
originating from the collapse of massive stars (long GRBs) or the merger of compact
objects such as neutron stars (short GRBs). These explosions occur in distant galaxies
and can outshine an entire galaxy for a brief period. They typically last for a few
milliseconds to several minutes and produce photons with energies around 1 MeV. Due
to their immense luminosity, GRBs serve as valuable probes of the early universe and
distant cosmic structures.

To observe a GRB from Earth, its received flux must not be less than 50 photons per
second per square centimeter. The luminosity of these explosions is approximately
1049 erg/s. In the Euclidean model describing this phenomenon, it is assumed that
these explosions originate from a point source and are emitted in a conical jet with an
opening angle of 10◦. On Earth, approximately one GRB is detected per week.

(a) What fraction of the sky can observe these GRBs?

(b) Using this information, estimate the distance to the farthest GRB that can be
observed from Earth.

(c) What is the approximate occurrence frequency of GRBs in a distant galaxy?

(d) If the jet opening angle were 5◦ instead of 10◦, how many GRBs would be observ-
able from Earth per week?
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6 Comet Ejection from the Oort Cloud (30 points)

A star with mass 0.5M� enters the Oort Cloud with a velocity of 30 km/s. Assume
the Oort Cloud is a spherical shell containing a large number of comets with a radius
of 105 AU.

(a) At what distance (in astronomical units) must this star pass near one of the Oort
Cloud comets for the comet to be ejected from the Oort Cloud? Provide any
necessary assumptions for solving the problem.

(b) If we assume the age of the Solar System is 4 × 109 years, what fraction of the
comets in the Oort Cloud would be ejected by this mechanism? Assume the
stellar number density in the Solar neighborhood is 0.1 stars per cubic parsec, the
average mass of these stars is 0.5M�, and the average velocity of these stars is
also 30 km/s.

(c) If we assume the radius of the Oort Cloud is 104 AU, how does the fraction
calculated in part (b) change?
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7 Cosmological Redshift (30 points)

When an object moves away from us, the received light from that object shifts to longer
wavelengths, appearing redder. This phenomenon is known as redshift, denoted by
the quantity z. It is defined as:

z =
λreceived − λe

λe

where λreceived is the observed wavelength and λe is the emitted wavelength.

Edwin Hubble, by observing different galaxies, demonstrated that for distant galaxies,
the relation:

v = H0d

holds, where H0 = 75 km/s/Mpc is the Hubble constant, d is the distance of the
galaxy from us, and v is its velocity as observed from Earth. As the distance in-
creases, the velocity of recession increases, implying that the universe is expanding.
Consequently, wavelengths of emitted light stretch, causing redshift.

(a) The scale factor of the universe at time t is given by r(t) = a(t)r(t0), where a(t) is
the scale factor and r(t0) = r0 represents the present size of the universe. Show
that:

r =
1

1 + z

(b) The mass density of the universe for a universe where all particles move much
slower than the speed of light (non-relativistic particles) is dependent on z. Derive
the expression for this dependence.

(c) The critical density of the universe is defined as the density for which the total
energy (sum of kinetic and potential energy) of cosmic objects is zero. Compute
the total energy of cosmic objects and derive an expression for the critical density.

(d) Compute the numerical value of the critical density in units of kg/m³.

(e) Express the critical density in terms of solar masses per cubic parsec. How
many solar masses per cubic parsec does this correspond to?
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8 Satellite Motion in the ECI Frame (60 points)

The ECI (Earth-Centered Inertial) frame is an inertial reference frame centered at
the Earth, where the x-axis points towards the vernal equinox, and the z-axis points
towards the celestial north pole. Consequently, the xy-plane lies in the celestial equator.

It can be shown, by integrating Newton’s second law in three dimensions — which are
second-order differential equations — that we have 6 degrees of freedom. Therefore,
to fully describe an orbit around the Earth’s gravity, we need 6 parameters, known as
the orbital elements, which are illustrated below in a general form.

Figure 1: The satellite’s orbital parameters.

Consider a satellite with the following orbital elements in the ECI frame: i = 0,
e = 0.15, a = 2.5Re, Ω = 0, ω = −30◦. This means the satellite’s orbit lies in the
celestial equator, and the satellite follows an elliptical orbit with semi-major axis a
and eccentricity e. The ellipse’s major axis is rotated clockwise by 30◦ from the x-axis.
Clearly, the Earth’s center is at one of the foci of this ellipse.

In this problem, derive relationships parametrically unless a numerical value is explic-
itly requested by the verb “calculate.”

The goal of this question is to study the motion of this satellite as observed by an
observer in Toronto with coordinates: φ = 43.65◦N , l = 79.5◦W = −5h18m. By the
information gained from the British Columbia site, it is known that at 15:20 Pacific
Time on December 10, the satellite is at its perigee. Since the satellite is relatively
close to Earth, what the observer in Toronto sees differs slightly from what an observer
at the Earth’s center would see. We know that British Columbia follows Pacific Time,
which is GMT -8. The Sun’s orbit is assumed to be circular with a radius of 1 AU.
The Sun is considered a distant object, but the satellite is not.
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To better understand the concept of time in astronomy, we define the mean Sun, which
moves with the same period as the real Sun but along the celestial equator instead of the
ecliptic. Both start moving from the vernal equinox and meet again at the autumnal
equinox. To define time on Earth, we use the mean Sun and define local time as follows:

LT = HMS + 12h

where HMS is the hour angle of the mean Sun for the local observer. It is noon when
this parameter is zero.

Zone time is then introduced by converting local time to Greenwich Mean Time (GMT)
and adding the time zone offset. For example, Eastern Time is GMT -5:

ZT = GMT − 5h

GMT = LT − l

(a) Calculate the declination and right ascension of the Sun on this day.

(b) From this point on, let the initial time be the moment the satellite is at its perigee.
At this moment, calculate how long it has been since sunset for the observer in
Toronto. Report your answer to the nearest minute.

(c) At the initial moment, provide the coordinates of the satellite and the observer in
the ECI frame as 3-component vectors, both in terms of parameters and calculate
numerically.

(d) Write the observer’s position vector in the ECI frame as a function of time (taking
the initial moment as t = 0).

(e) Write the satellite’s position vector in the ECI frame as a function of time. (Due
to the elliptical orbit, this will not be a single closed-form expression, so use
Kepler’s equations.)

Since the satellite’s eccentricity is small, using a first-order approximation for the
eccentricity, the satellite’s position vector can be expressed as a time function.
The first-order approximation is given by:

f(e) ≈ f(e = 0) + f ′(e = 0)e, e� 1

(f) Prove that with a first-order approximation, eccentricity anomaly E can be ex-
pressed as a function of time as follows:

E = Ωt− e sin Ωt

where Ω = 2π
T

and T is the period of the satellite.
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(g) Using the first-order approximation, show that the true anomaly angle θ can be
expressed as a time-dependent function:

θ = E + 2e sinE

θ = p(t) + eq(t)

Describe why the function p is linear in time, and the function q is periodic with
period T . Derive both as functions of the orbital parameters.

(h) Now, with the first-order expansion for eccentricity, write the satellite’s position
vector as a time-dependent parametric function.

(i) Formulate the condition for the satellite’s rise and set as a function of the ob-
server’s and satellite’s position vectors and their interactions.

(j) The previous condition results in an equation involving time. Calculate the date
and time of the satellite’s first rise and set as observed from Toronto in Eastern
Time.

(k) Calculate the satellite’s hour angle at the moments of its first rise and set(Hour
angle is shown by H’):

Figure 2: The satellite’s hour angle is not the same for the observer and the centre of the
Earth

H 6= H ′
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(l) The satellite’s apparent motion in the sky depends on its relative tangential ve-
locity to the observer. At the moments of the first rise and set, this tangential
velocity makes an angle with the horizon, indicating how the satellite emerges
from the horizon. Report this angle for both the first rise and set.

(m) The satellite’s relative radial velocity to the observer causes a Doppler shift in the
received signal. Find the Doppler shift as a time-dependent parametric function
for the period between the satellite’s rise and set. Is there a moment when the
Doppler shift is zero? If so, report the date and time of this event in Eastern
Time.

(n) Derive the azimuth of the satellite as a time-dependent parametric function. Is
there a moment when the satellite’s azimuth rate of change becomes zero and
reverses direction (similar to the retrograde motion of planets)? If so, report the
date and time of this event in Eastern Time.

(o) Derive the satellite’s altitude as a time-dependent parametric function. At what
azimuth does the satellite reach its maximum altitude? Shouldn’t it be 180◦?
What is this maximum altitude?
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