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Preface

This guide is intended for students who wish to participate in the Canadian
Astronomy and Astrophysics Olympiad (CAAO). It serves as an introductory-
level introduction to the Olympiad for interested students across Canada. Each
year, the highest-achieving CAAO students are selected to represent Team
Canada in the International Astronomy and Astrophysics Olympiad (IOAA),
and are provided with a training program to prepare them for the international
competition.

While this guide contains a great deal of information, we recommend that
students supplement their learning with other resources listed in the reference
section. The guide includes numerous practice problems designed to complement
students’ learning path. Additionally, we highly encourage students to solve
past CAAO problems available in a separate file.

To participate in the Canadian astronomy Olympiad, students should have
a solid foundation in high school-level physics and mathematics. However,
for the international Olympiads, students will need to develop an advanced
understanding of physics and mathematics beyond what is typically taught in
high school.

The International Astronomy and Astrophysics Olympiad (IOAA) is a
prestigious international competition for high school students. Each year, the
brightest students from around the world compete in this event, and Canada
has been participating in the IOAA since 2013.
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Resources

The Canadian Astronomy and Astrophysics Olympiad (CAAO) requires diligent
preparation by interested students, and the use of appropriate resources is critical
to success. Several textbooks have been identified as valuable resources in this
endeavor, including:

1. Foundations of Astrophysics, authored by Barbara Ryden

2. Fundamental Astronomy, written by Karttunen et al.

3. An Introduction to Modern Astrophysics, co-authored by Bradley Carroll
and Dale Ostlie

4. Astronomy Principles and Practice, by Archie E. Roy and David Clarke

5. Introduction to Cosmology, authored by Barbara Ryden

The first two textbooks are introductory level, while An Introduction to
Modern Astrophysics is suitable for students with a strong background in
physics and calculus. Students seeking comprehensive knowledge of spherical
astronomy are advised to reference Astronomy Principles and Practice.

Additionally, students are expected to possess a solid foundation in high
school-level physics and mathematics. Senior-level students are strongly
encouraged to deepen their understanding of these subjects by studying calculus.

Aspiring students may benefit from exploring more advanced IOAA-level
resources. The references used to compile this document have been included in
the reference section for this purpose.
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PART I

Introduction to CAAO





CHAPTER 1

Basic Concepts

1.1 Parallax

Measuring the intrinsic brightness of stars is linked with determining their
distances. On Earth, the distance to the peak of a remote mountain can be
determined by measuring that peak’s angular position from two observation
points separated by a known baseline distance. Simple trigonometry then
supplies the distance to the peak. Finding the distance even to the nearest
stars requires a longer baseline. As Earth orbits the Sun, two observations of
the same star made 6 months apart employ a baseline equal to the diameter
of Earth’s orbit. These measurements reveal that a nearby star exhibits an
annual back-and-forth change in its position against the stationary background
of much more distant stars. a measurement of the parallax angle p (one-half of
the maximum change in angular position) allows the calculation of the distance
d to the star.

We can write the equation as:

d = 1AU

tan p
≈ 1

p
AU (1.1)

The angle p is smaller as the distance
becomes larger. Using parallax, we are
going to introduce a new distance measure,
parsec.
A parsec is the distance at which 1
Astronomical Unit subtends an angle of 1
second of arc (arcsecond):

1 parsec = 3.26 light years

1pc = 1AU

( 1
3600 × π

180 )
= 206265AU

Figure 1.1: Parallax triangle

1 arc-second is 1/60 of an arc-minute, and an arc-minute is 1/60 of one
degree. Therefore, an arc-second is 1/3600 th of one degree.

3



1. Basic Concepts

1.2 Stellar Luminosity

Stars are considered as a spherical source of radiating energy due to their
temperature; their total energy output can be determined by the equation
below, according to their surface temperature and surface area. This total
output is referred to as the stellar luminosity, L, and may be expressed as:

L = 4πR2σT 4, (1.2)

where R is the radius of the star, σ is known as Stefan-Boltzmann’s constant
and T is the star’s surface temperature. The unit of luminosity is Watts (joules
per second). For instance, the luminosity of our sun is 3.85 × 1026 W .

1.3 Brightness (radiant flux)

The brightness of a star is measured in terms of the flux received from the star.
The power received per unit area at the Earth depends on the stellar luminosity
and on the inverse square of the stellar distance. If the latter is known, the flux
provided by the source may be readily calculated and expressed in terms of
watts per square metre (W/m2). Imagine a star of luminosity L surrounded

Figure 1.2: Flux vs. distance

by a huge spherical shell of radius d. Then, assuming that no light is absorbed
during its journey out to the shell, the radiant flux, b, measured at distance d
is related to the star’s luminosity by:

b = L

4πd2 , (1.3)

the denominator is simply the area of the sphere. Since L does not depend on
d, the radiant flux is inversely proportional to the square of the distance from
the star. This is the well-known inverse square law for light.

1.4 Magnitude system

Invented by the astronomer Hipparchus 2200 years ago, it was simply a way to
“rank” the stars visible at night. The brightest were ranked as 1st magnitude,
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1.5. Limiting magnitude

the faintest visible were ranked as 6th magnitude. In other words, the brightest
stars were assigned the smallest number, the faintest the largest number. And 6
divisions were used because of the mysticism about 6, which is the first perfect
number. The brightness ratio of rank first and sixth is 100:

K5 = 100 → K = 5
√

100 = 2.5118 → b2
b1

= 2.5118m1−m2

m1 − m2 = −2.5 log b1

b2
, (1.4)

Where m is the magnitude of the stars. The magnitude system is based on
the comparison; This means that you need to know the magnitude of a certain
star and by comparing its brightness with other stars you can determine the
magnitude of the star.

The absolute magnitude, M , is defined to be the apparent magnitude a
star would have if it were located at 10 pc. Recall that a difference of 5
magnitudes between the apparent magnitudes of two stars corresponds to the
smaller magnitude star being 100 times brighter than the larger-magnitude
star. This allows us to find an equation for the absolute magnitude just like
the apparent magnitude:

M1 − M2 = −2.5 log L1

L2
, (1.5)

Where M is the absolute magnitude and L is the luminosity of the star. To
use this equation, we need to know a specific star’s absolute magnitude and
luminosity to be able to compare it with other stars. We have defined two
different magnitudes, absolute and apparent. We defined absolute magnitude
as the apparent magnitude at a certain distance (10 parsecs), therefore, there
should be a connection between the star distances and their magnitudes. This
relation is called Distance Modulus:

m − M = 5 log d − 5, (1.6)

Where d is in parsecs, m and M are apparent and absolute magnitudes
respectively. Unlike the previous magnitude relations (Equations 1.4-1.5),
distance modulus is written for a single star. It is the relationship between
the absolute and apparent magnitude of any star in the distance d. Using this
relation, it is clear that if you have any star in the distance of 10 parsecs, then
the two magnitudes should be equal to each other.

1.5 Limiting magnitude

Looking up at the night sky, we are not able to see all the stars; our eyes have
limited light-gathering aperture (around 6mm on a dark night!). The faintest
stars that your naked eye can see in the night are about 6 − 6.5 magnitudes.
However, this limiting magnitude might also change due to light pollution
or atmospheric effects. For instance, in a metropolitan area, your limiting
magnitude might go up to 2 − 3 magnitudes. This would seriously limit your
ability to see constellations.

We know that using optical devices would enable us to see fainter objects in
the sky. For instance, if you are using a telescope since it has a bigger diameter,

5



1. Basic Concepts

it is able to gather more light than your eyes can. Therefore, we have the
equation below to determine the limiting magnitude of a telescope:

me − mt = −5 log Dt

De
, (1.7)

Where me is the limiting magnitude of the naked eye (me ≈ 6.5), mt is the
telescope’s limiting magnitude, De is the pupil’s diameter (De ≈ 6 mm) and
Dt is the telescope’s diameter.

6



CHAPTER 2

Telescopes

2.1 Optical Telescopes

An optical telescope forms images of faint and distant stars. It can collect much
more light from space than the human eye can. Optical telescopes are built in
two basic designs—refractors and reflectors. The heart of a telescope is its
objective, a main lens (in refractors) or a mirror (in reflectors). Its function is
to gather light from a sky object and focus this light to form an image. The
ability of a telescope to collect light is called its light-gathering power.

Light-gathering power is proportional to the area of the collecting surface,
or to the square of the aperture (clear diameter of the main lens or mirror).
The size of a telescope, such as 150 mm or 8 m (6-inch or 26-foot), refers to
the size of its aperture. You can look at the image directly through an eyepiece,
which is essentially a magnifying glass. Or you can photograph the image or
record and process it electronically. Your eye lens size is about 6 mm. A 150
mm (6-inch) telescope has an aperture over 30 times bigger than your eye lens.
Its light-gathering power is 900 times greater than that of your eye. So, a star
appears over 900 times brighter with a 150 mm (6-inch) telescope than it does
to your unaided eye.

Astronomers build giant telescopes to detect fainter and more distant objects.
All stars appear brighter with telescopes than they do to the eye alone. The
extra starlight gathered by the telescope is concentrated into a single point.
Using time exposure, a giant 10 m (400-inch) telescope can image very faint
stars down to about magnitude 28, which is the same apparent brightness as a
candle viewed from the Moon!

2.2 Refracting Telescopes

A refracting telescope has a main, objective lens permanently mounted at the
front end of a tube. Starlight enters this lens and is refracted, or bent so that
it forms an image near the back of the tube. The distance from this lens to
the image is its focal length. You may look at the image through a removable
magnifying lens called the eyepiece. The tube keeps out scattered light, dust,
and moisture. Italian astronomer Galileo Galilei (1564–1642) first pointed a
refracting telescope skyward in 1609. The largest instrument he made was
smaller than 50 mm (2-inches).

7



2. Telescopes

Today refracting telescopes range in size from a beginner’s 60-mm (2.4-inch)
to the largest ever built, the 1 m (40-inch) telescope at the Yerkes Observatory
in Williams Bay, Wisconsin, U.S., which was completed in 1897.

Figure 2.1: (a) Objective lens gathers the light and forms an image. (b)
Eyepiece magnifies the image formed by the objective. (c) The focal length of
the objective lens.

2.3 Reflecting Telescopes

A reflecting telescope has a highly polished curved-glass mirror, the primary
mirror, mounted at the bottom of an open tube. When starlight shines on this
mirror, it is reflected back up the tube to form an image at the prime focus.

You can record the image at the prime focus, or you can use additional
mirrors to reflect the light to another spot. The Newtonian telescope,
originated by British scientist Sir Isaac Newton in 1668, uses a small, flat mirror
to reflect the light through the side of the tube to an eyepiece (Figure below).
The Cassegrain telescope uses a small convex mirror, a secondary mirror, to
reflect the light back through a hole cut in the primary mirror at the bottom
end of the tube. It is more compact than a refractor or Newtonian reflector of
the same aperture. The Schmidt-Cassegrain telescope combines an extremely
short-focus spherical primary mirror at the back end of a sealed tube with a
thin lens at the front.

8



2.4. F-number

Figure 2.2: Newtonian reflecting telescope

Figure 2.3: Cassegrain reflecting telescope.

2.4 F-number

Telescopes are often described by both their aperture size and f-number. The f-
number is the ratio of the focal length of the main lens or mirror to the aperture.
These specifications are important because the brightness, size, and clarity of
the image produced by a telescope depend on the aperture and focal length
of its main lens or mirror. For example, a “150-mm (6-inch), f/8 reflector”
means the primary mirror is 150 mm (6-inches) in diameter and has a focal
length of 1200 mm (8 × 150), or 48 inches (8 × 6).

2.5 Images

All stars except our Sun are so far away that they appear as dots of light in
a telescope. The Moon and planets appear as small disks. Image size is
proportional to the focal length of the telescope’s main lens or mirror.

For example, a mirror with a focal length of 2.5 m (100 inches) produces
an image of the Moon that measures about 2.5 cm (1 inch) across. You know
that the 5 m (200-inch), f/3.3 mirror has a focal length of 16.5 m (660-inches),
which is over six times as long. Hence, it produces an image of the Moon that
is about six times as big or 15 cm (6-inches) across.

Lenses and mirrors form real images that are upside down. (A real image
is formed by the actual convergence of light rays.) Since inverted images do
not matter in astronomical work and righting them would require additional
light-absorbing optics, nothing is done to turn images upright in telescopes.
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2. Telescopes

2.6 Lens and the focal length

In a camera with a lens, the image will be in focus only at a fixed distance F
from the lens. The distance F to the focal plane depends on the shape of the
lens, as well as on its refractive index. For lenses, a useful parameter is the
focal ratio f = F/D, where D is the diameter of the lens. The size of the image
produced is not affected by the diameter D of the lens but only by the focal
length F .

Figure 2.4: Focal plane.

In the figure 2.4, two stars separated by a small angle θ on the sky have
images that are separated by a physical distance d on the focal plane. Another
useful parameter, in addition to the focal length, is the scale of the image on
the focal plane, known for historical reasons as the plate scale. Specifically, an
angular distance θ on the celestial sphere is related to a physical distance d on
the image plane by the plate scale s:

θ[arcsec] = s[arcsec/mm].d[mm], (2.1)

we can also write this as:
θ[radians] = d

F
, (2.2)

and therefore:

θ[arcsec] = θ[radians]. 180◦

π[radians] .
3600arcsec

1◦ = 206265( d

f
), (2.3)

we have a relationship between the plate scale s and the focal length F:

s[arcsec/mm] = 206265
F [mm] . (2.4)

The human eye, for instance, has a focal length F ≈ 17 mm, and hence a
“plate scale” s ≈ 12, 100 arcsec/mm, or s ≈ 3.4◦/mm; when you look at the
full Moon, its image covers an area of your retina less than 0.15 mm across.
Large astronomical telescopes have focal lengths that are more conveniently
expressed in meters than in millimeters.

For these big telescopes, we may write:

s[arcsec/mm] = 206.265
F [m] = 206.265

fD[m] , (2.5)
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2.6. Lens and the focal length

where f is the focal ratio, and D is the diameter of the telescope’s aperture.
As an example, the famous “forty-inch” Yerkes Telescope (at Williams Bay,
Wisconsin) has an aperture D = 1.02 m and a focal ratio f = 19. The plate
scale of the Yerkes Telescope is thus:

s = 206.265
19 × (1.02)arcsec/mm = 10.6 arcsec/mm, (2.6)

therefore an image of the full Moon produced by the Yerkes Telescope is 170
mm across, about the size of a salad plate.

The major optical component of a refracting telescope is the primary or
objective lens of focal length fobj . The purpose of the objective lens is to collect
as much light as possible and with the greatest possible resolution, bringing the
light to a focus at the focal plane. A photographic plate or other detector may
be placed at the focal plane to record the image, or the image may be viewed
with an eyepiece, which serves as a magnifying glass. The eyepiece would be
placed at a distance from the focal plane equal to its focal length, feye, causing
the light rays to be refocused at infinity. The figure below shows the path of
rays coming from a point source lying off the optical axis at an angle θ. The
rays ultimately emerge from the eyepiece at an angle ϕ from the optical axis.
The angular magnification produced by this arrangement of lenses can be shown
to be:

m = fobj

feye
. (2.7)

Figure 2.5: Telescope Magnification

In astronomy, the field of view is the amount of sky you can see, whether
with your unaided vision, binoculars, or a telescope. If you had eyes on all sides
of your head, you would have a 360◦ field of view. (Some insects actually do!)
If you include peripheral vision, your naked eye field of view is nearly 180◦, but
with varying quality across this field. A telescope will have a much smaller field
of view, but it has significant advantages, such as greater magnification and
light-gathering power.

Field of view (FOV) is the diameter of a region of the sky that you can see
using a specific instrument. The FOV would change with the magnification of
the telescope you are using.
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2. Telescopes

Figure 2.6: Field of view

2.7 Telescope resolving power

The resolving power of a telescope is defined as the ability of a telescope
to distinguish objects with a small angle between them. This is known as
the theoretical resolving power of the instrument. If the telescope is of
good design and in correct adjustment, it should be possible to achieve this
theoretical value. It should be possible to resolve two stars if they are separated
by an angle (in radians) greater than:

α = 1.22 λ

D
. (2.8)

This value is known as the theoretical angular resolving power of the telescope.
It can be seen that the resolving power is inversely proportional to the diameter
of the objective. We take a value of 5500 Angstroms for λ being the effective
wavelength for visual observations.

12



CHAPTER 3

Observing the Universe

sec:observing
Astronomy is ultimately an observational science. From the study of the life
cycles of stars, to the dynamics of galaxies, to the detection of cosmic expansion,
observations form the foundation of astrophysics. In this chapter we will focus
on themes frequently emphasized in the International Olympiad on Astronomy
and Astrophysics (IOAA): stellar evolution, galaxies, Doppler and redshift,
Hubble’s Law, and planetary motion.

3.1 Stellar Evolution

Stellar evolution refers to the life cycle of a star, from its birth within interstellar
gas to its final stages as a white dwarf, neutron star, or black hole. This subject
is central to both astrophysics and Olympiad-level problem solving: many
theoretical, data analysis, and observational questions involve stellar properties,
timescales, and end states.

Star Formation

Stars form in giant molecular clouds (GMCs), which are cold (10–50 K), dense
(102–105 cm−3), and primarily composed of molecular hydrogen.

• Jeans instability: collapse begins if the cloud’s mass exceeds the Jeans
mass

MJ ∼ 5kT

2Gmp

(
3

4πρ

)1/2
. (3.1)

• Free-fall time: the timescale for gravitational collapse is

tff ∼
√

3π

32Gρ
. (3.2)

During collapse, fragmentation produces protostars. Accretion disks and
bipolar outflows are common features; angular momentum conservation plays a
critical role.
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3. Observing the Universe

Pre-Main Sequence and Hydrostatic Equilibrium

As a protostar contracts, gravitational potential energy converts into heat
(Kelvin–Helmholtz contraction).

tKH ∼ GM2

RL
. (3.3)

For the Sun, tKH ∼ 3 × 107 years, consistent with the idea that nuclear
fusion must power the Sun on longer timescales.

Hydrostatic equilibrium requires

dP

dr
= −GM(r)ρ(r)

r2 , (3.4)

with energy transport by radiation or convection depending on opacity.

Main Sequence Phase

The main sequence (MS) is characterized by hydrogen fusion in the core.

• Mass–luminosity relation (IOAA favorite):

L ∝ M3.5 (0.5M⊙ ≲ M ≲ 10M⊙). (3.5)

• Stellar lifetime on the main sequence:

tMS ∼ 1010 yr
(

M

M⊙

)−2.5
. (3.6)

High-mass stars (M > 8M⊙) live only a few Myr, while low-mass red dwarfs
can survive for trillions of years.

Low-Mass Stars: Red Dwarfs and White Dwarfs

• Red dwarfs (M < 0.5M⊙): fully convective, slowly burn hydrogen. No
red dwarfs have yet reached the end of their lives in the universe’s history.

• White dwarfs: degenerate remnants of stars with M ≲ 8M⊙. Supported
by electron degeneracy pressure; radius decreases with mass.

The maximum mass is the Chandrasekhar limit:

MCh ≈ 1.44M⊙. (3.7)

Intermediate and High-Mass Stars

Stars with M > 8M⊙:

• Evolve off the MS to red supergiants.

• Fuse heavier elements (He → C → O → ... up to Fe).
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3.2. Galaxies

• End in core-collapse supernovae (Type II, Ib, Ic).

Observationally, IOAA has tested knowledge of:

• HR diagram tracks of stars of different masses.

• Cepheid variables as standard candles (period–luminosity relation).

• Energy released in a core collapse compared to binding energy of a neutron
star.

Supernovae and Compact Remnants

• Type Ia supernovae: thermonuclear explosion of a white dwarf in a
binary.

• Type II/Ib/Ic: collapse of massive cores.

• Neutron stars: supported by neutron degeneracy pressure; radius ∼ 10–
15 km. Pulsars are rotating, magnetized neutron stars.

• Black holes: if core mass exceeds ∼ 3M⊙, collapse is inevitable.

The Schwarzschild radius is

Rs = 2GM

c2 . (3.8)

Key Olympiad Connections

• Estimating stellar lifetimes via mass–luminosity relation.

• Order-of-magnitude calculations of tKH and tMS.

• White dwarf radii from mass–radius relation.

• Jeans criterion in star formation.

• Energetics of supernovae and binding energies of compact objects.

3.2 Galaxies

Galaxies are vast gravitationally bound systems of stars, gas, dust, and dark
matter. They come in a variety of morphologies and play a crucial role
in cosmology and astrophysics. Understanding galaxies is also essential for
Olympiad-level astronomy, as many problems involve galaxy dynamics, mass
estimates, and cosmological applications.
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3. Observing the Universe

Types of Galaxies

• Elliptical galaxies: Smooth, ellipsoidal systems, generally containing
old, red, low-mass stars with little interstellar gas. They are often found in
clusters and classified from E0 (nearly spherical) to E7 (highly elongated).

• Spiral galaxies: Disk-shaped galaxies with spiral arms, containing both
young and old stars. They are gas-rich, active sites of star formation.
The Milky Way and Andromeda are spiral galaxies. Barred spirals (SB)
contain a central bar-like structure.

• Irregular galaxies: Lacking a defined structure, usually small and gas-
rich. They are often satellites of larger galaxies and can be distorted by
tidal forces. Examples: the Large and Small Magellanic Clouds.

Size and Mass Ranges

• Dwarf galaxies: masses ∼ 107–109M⊙, containing 107–109 stars.

• Spirals: masses ∼ 1011M⊙, sizes of tens of kiloparsecs.

• Giant ellipticals: masses up to ∼ 1013M⊙, sizes ∼ 100 kpc.

The largest known elliptical galaxy, IC 1101, has a diameter of over 6 million
light-years and contains trillions of stars.

Galaxy Rotation and Dark Matter

Rotation curves of spiral galaxies provide one of the strongest pieces of evidence
for dark matter.

• Observed: rotational velocity v(r) remains approximately flat at large
radii.

• Newtonian expectation: v(r) ∝ r−1/2 if mass is concentrated near the
center.

This discrepancy suggests the presence of an extended dark matter halo.
The dynamical mass inside radius r is estimated by

M(r) = v(r)2r

G
. (3.9)

Tully–Fisher Relation

For spiral galaxies, there is an empirical correlation between the galaxy’s
luminosity L and its maximum rotation velocity vmax:

L ∝ vα
max, (3.10)

with α ≈ 4. This relation is used as a distance indicator in extragalactic
astronomy and has been tested in IOAA problems.
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3.2. Galaxies

Mass-to-Light Ratio

The mass-to-light ratio (M/L) is a useful measure of how much dark matter a
galaxy or cluster may contain:

Υ = M

L
. (3.11)

For the Sun, Υ⊙ ≡ 1 M⊙/L⊙. Typical values:

• Spirals: Υ ∼ 5–10

• Ellipticals: Υ ∼ 10–20

• Clusters: Υ ∼ 100 or more, indicating large amounts of dark matter.

Supermassive Black Holes

Most galaxies, including the Milky Way, contain a supermassive black hole
(SMBH) at their centers:

• Masses: 106–1010M⊙.

• Example: Sagittarius A* at the center of the Milky Way has a mass of
∼ 4 × 106M⊙.

Accretion onto SMBHs powers quasars and active galactic nuclei (AGN).
Observations of SMBHs are often tested at IOAA (e.g., black hole shadows,
Eddington luminosity).

Galaxy Evolution

Galaxies form hierarchically in the ΛCDM cosmological model: small
protogalaxies merge to form larger systems. Key processes:

• Mergers: drive morphological transformations (e.g., spirals merging into
ellipticals).

• Starbursts: episodes of intense star formation triggered by interactions.

• Chemical enrichment: successive generations of stars enrich the
interstellar medium with heavier elements (“metals”).

Observations show that galaxies in the early universe were more irregular,
gas-rich, and star-forming compared to present-day galaxies.

Key Olympiad Connections

• Estimating galaxy mass from rotation curves and M(r) = v2r/G.

• Using Tully–Fisher relation to compute extragalactic distances.

• Order-of-magnitude estimates of dark matter fractions in galaxies.

• Supermassive black hole mass estimates from stellar orbital velocities.
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3. Observing the Universe

3.3 Doppler Effect and Redshift

The Doppler effect describes the change in wavelength or frequency of a wave
due to relative motion between source and observer. For astronomy, it is crucial
in determining radial velocities of stars, galaxies, and exoplanets.

Classical Doppler Effect

For a source moving with radial velocity vr much smaller than the wave speed
c, the fractional shift in wavelength is

∆λ

λrest
= λobs − λrest

λrest
= vr

c
. (3.12)

• If vr > 0 (object receding), λobs > λrest (redshift).

• If vr < 0 (object approaching), λobs < λrest (blueshift).

Relativistic Doppler Effect

For velocities comparable to c, time dilation must be taken into account. The
exact formula is

z ≡ ∆λ

λrest
=

√
1 + vr/c

1 − vr/c
− 1. (3.13)

This reduces to the classical form z ≈ vr/c for vr ≪ c.

Redshift Parameter

In astronomy, the dimensionless redshift z is defined as

z = λobs − λrest

λrest
. (3.14)

For small z, v ≈ cz, but at high z (cosmological scales) redshift arises from
the expansion of space rather than Doppler motion alone.

Applications in Astronomy

• Binary stars: Periodic Doppler shifts in spectral lines measure orbital
velocities and mass ratios.

• Exoplanets: Radial velocity method uses tiny Doppler shifts (∼ m/s
precision).

• Galaxies: Measuring redshift provides recessional velocity and, via
Hubble’s Law, distance.

• Quasars and cosmology: Very high redshifts (z > 6) indicate light
emitted when the universe was less than a billion years old.

—
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3.4. Hubble’s Law

3.4 Hubble’s Law

In the 1920s, Edwin Hubble discovered that galaxies show a redshift roughly
proportional to their distance. This implies that the universe as a whole is
expanding.

v = H0D, (3.15)

where

• v is the recession velocity (km/s),

• D is the galaxy’s distance (Mpc),

• H0 is the Hubble constant (∼ 70 km/s/Mpc).

Estimating the Age of the Universe

Assuming constant expansion rate,

tHubble ≈ 1
H0

. (3.16)

For H0 ≈ 70 km/s/Mpc,

tHubble ∼ 14 Gyr,

consistent with modern estimates from cosmology.

IOAA-style Connections

• Deriving galaxy distances from measured redshift z and Hubble’s Law.

• Estimating the Hubble time tH from a given H0.

• Problems involving recessional velocity and lookback time.

• Recognizing when to use relativistic vs. classical Doppler formula.

3.5 Planetary Motion

The apparent motion of planets in the sky is the result of both their orbital
motion around the Sun and the Earth’s own motion. Understanding planetary
configurations is a classic topic for Olympiad-level astronomy, especially for
observational and theoretical questions.

Direct and Retrograde Motion

Most of the time, planets appear to move eastward (direct motion) relative to
the background stars. Occasionally, outer planets (e.g., Mars, Jupiter, Saturn)
exhibit westward loops (retrograde motion) as the faster-moving Earth overtakes
them in its orbit.
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3. Observing the Universe

Inferior and Superior Planets

Planets are classified based on their orbital size relative to Earth:

• Inferior planets: Mercury and Venus, with orbits inside Earth’s orbit.
They never appear far from the Sun in the sky. Their maximum angular
separation is called the greatest elongation.

– Mercury: max elongation ∼ 28◦.
– Venus: max elongation ∼ 47◦.

• Superior planets: Mars, Jupiter, Saturn, Uranus, Neptune. Their orbits
lie outside Earth’s orbit, so they can appear anywhere along the ecliptic
relative to the Sun.

Planetary Configurations

Key configurations for Olympiad problems include:

• Conjunction: Planet aligned with the Sun.

• Opposition: For superior planets, occurs when Earth is between the
planet and the Sun. Planet rises at sunset, visible all night.

• Quadrature: Superior planet appears 90◦ east or west of the Sun in the
sky.

• Inferior conjunction: Inferior planet lies between Earth and Sun.

• Superior conjunction (inferior planets): The Sun lies between Earth
and the planet.

Figure 3.1: Planetary configurations: elongations, conjunctions, opposition, and
quadrature.
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3.5. Planetary Motion

Synodic and Sidereal Periods

The orbital motion of planets leads to two distinct periods:

• Sidereal period (T ): Orbital period of a planet relative to the stars.

• Synodic period (S): Time between successive similar configurations
(e.g., oppositions, conjunctions) as seen from Earth.

The relation between them is

1
S

=
∣∣∣∣ 1
Tplanet

− 1
T⊕

∣∣∣∣ , (3.17)

where T⊕ = 1 year is Earth’s orbital period.

IOAA-style Examples

• Given orbital periods, compute synodic periods for different planets.

• Use elongation angle and Earth–Sun distance to estimate orbital radius
of an inferior planet.

• Geometry-based problems on retrograde loops of Mars or Jupiter.
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CHAPTER 4

Spherical Astronomy

We have seen that the observer who views the heavens at night gets the
impression that they are at the centre of a great hemisphere onto which the
heavenly bodies are projected. The moon, planets, and stars seem to lie on this
celestial hemisphere, their directions defined by the positions they have on its
surface. For many astronomical purposes, the distances are irrelevant so the
radius of the sphere can be chosen at will. The description of the positions of
bodies on it, considering positional changes with time, necessarily involves the
use of special coordinate and timekeeping systems. The relationship between
the positions of bodies requires a knowledge of the geometry of the sphere.
This branch of astronomy, called spherical astronomy, is in one sense the
oldest branch of the subject, its foundations dating back at least 4000 years.
Its subject matter is still essential and never more so than today when the
problem arises of observing or calculating the position of an artificial satellite
or interplanetary probe. We, therefore, begin by considering the geometry of
the sphere.

4.1 Spherical geometry

The geometry of the sphere is made up of great circles, small circles, and arcs of
these figures. Distances along great circles are often measured as angles since,
for convenience, the radius of the sphere is made unity. A great circle is defined
to be the intersection with the sphere of a plane containing the centre of the
sphere. Since the centre is equidistant from all points on the sphere, the figure
of intersection must be a circle. If the plane does not contain the centre of the
sphere, its intersection with the sphere is a small circle.
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4. Spherical Astronomy

We can draw infinite circles on a sphere, some may have a radius of the
sphere (great circles) and others will have a smaller radius (small circles). In
the figure on the right ANBM, CNDM, and APBQ are all great circles, while
EFG is a small circle.

Figure 4.1: Great and small circles on a sphere

The area of the spherical triangle can be found by the equation:

SABC = (A + B + C − π)R2, (4.1)

where all angles must be written in terms of Radians and R is the radius
of the sphere. Just as the formulas of plane trigonometry can be used to
perform calculations in plane geometry, special trigonometrical formulas for use
in spherical geometry can be established. There are many such formulas but
four are more often used than any of the others. They are the relations between
the sides and angles of a spherical triangle and are invaluable in solving the
problems that arise in spherical astronomy.

Figure 4.2: Area of a spherical triangle with angles of A, B, and C
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4.2. Position on the Earth’s surface

ABC is a spherical triangle with sides AB, BC, and CA of lengths c, a, and
b, respectively, and with angles ∠CAB,∠ABC, and ∠BCA hereafter referred
to as angles A, B and C respectively. The four formulas are:

Figure 4.3: Sample spherical triangle

Sine formula:
sin a

sin A
= sin b

sin B
= sin c

sin C
(4.2)

Cosine formula:

cos a = cos b cos c + sin b sin c cos A
cos b = cos a cos c + sin a sin c cos B
cos c = cos a cos b + sin a sin b cos C

(4.3)

Polar formula formula:

− cos A = cos B cos C + sin B sin C cos a
− cos B = cos A cos C + sin A sin C cos b
− cos C = cos A cos B + sin A sin B cos c

(4.4)

Four-parts formula:

cos a cos C = sin a cot b − sin C cot B (4.5)

4.2 Position on the Earth’s surface

To illustrate these concepts, we consider the Earth. Geographers have already
shown us how to set up a coordinate system on a sphere; the system of
latitude and longitude provides a coordinate system on the surface of the
(approximately) spherical Earth. On the Earth, the north and south poles
represent the points where the Earth’s rotation axis passes through the Earth’s
surface. The equator is the great circle midway between the north and south
pole, dividing the Earth’s surface into a northern hemisphere and a southern
hemisphere.
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4. Spherical Astronomy

Figure 4.5: Longitude l

The latitude of a point on the Earth’s surface is its angular distance from
the equator, measured along a great circle perpendicular to the Earth’s equator.
Latitude is measured in degrees, arc-minutes, and arc-seconds, as is longitude.
Thus, the use of latitude and longitude does not require knowing the size of
the Earth in kilometers or any other unit of length. The longitude may be
expressed in angular measure or in time units related to each other by the table
on the right.

Figure 4.6: Unit conversions used in spherical astronomy

4.3 The horizontal (alt-azimuth) system

It is convenient to imagine a sphere at a great distance (“infinity”) upon which
all stars lie. This is called the celestial sphere. The positions of stars on this
sphere may be specified with two angles, analogous to the way latitude and
longitude specify a position on the earth’s surface. This celestial sphere is an
artificial construction; stars are not all at the same distance. Stars in our own
Galaxy range in the distance from 4 light-years to more than 50000 light-years
from the Earth. Nevertheless, the concept of the celestial sphere is useful for
charting the sky as one sees it.

One such coordinate system on the celestial sphere is based on an observer’s
horizon and hence is called the horizon coordinate system. In this system, the
latitude-like coordinate is the altitude, defined as the angle of a celestial object
above the horizon circle. The zenith (the point directly overhead) is at an
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4.3. The horizontal (alt-azimuth) system

altitude of 90◦. Points on the horizon circle are at an altitude of 0◦. The nadir
is at an altitude of −90◦, but in practice, negative altitudes are seldom used,
since they represent objects that are hidden by the Earth. The longitude-like
coordinate in the horizon coordinate system is called the azimuth

Figure 4.7: Horizontal(alt-azimuth) coordinate system

In the above figure, X is the position of the star. The arc of X̂M = h,
where h is the altitude. Therefore, the zenith distance is X̂Z = 90◦ − h = z.
The azimuth of this star is the red angle shown in the figure: A = 360◦ − N̂OM .
Azimuth is usually expressed from North to East. But if the star is located in
the western hemisphere (like the star in the figure), we can express the azimuth
from North to West: A = N̂OM W .

For any point on the celestial sphere, half a great circle can be drawn from
the zenith, through the point in question, to the nadir. The half-circle that
runs through the north point on the horizon circle acts as the ıprimemeridianȷ
in the horizon coordinate system. The azimuth is measured in degrees running
from north to east. An object due north of an observer has an azimuth of 0°,
an object due east has an azimuth of 90°, and so forth. If you know the altitude
and azimuth of any object in your horizon coordinate system, you know where
to point your telescope to see it.
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4. Spherical Astronomy

If we consider the figure below for an observer in a particular latitude of ϕ,
the direction of rotation of the Earth is P1, and since the north celestial pole
(NCP ) is in distant, P2 will be the direction for that the person will see the
north celestial pole. It is depicted that the altitude of the pole is equal to the
latitude of the observer.

Figure 4.8: altitude of NCP for the observer on Earth

One shortcoming of the horizon coordinate system is that every observer on
Earth has a different, unique horizon and hence has a different, unique horizon
coordinate system. A star that is near the zenith (altitude ≈ 90◦) for an
observer in Buenos Aires will be near the nadir (altitude -90°) for an observer
in the antipodal city of Shanghai. To describe the positions of objects on the
celestial sphere, it is useful to have a coordinate system that all astronomers,
regardless of location, can agree on, just as geographers all agree to use latitude
and longitude to describe positions on the Earth.

4.4 The equatorial system

To build a coordinate system that works for everyone on Earth, we start by
projecting the Earth’s poles and equator outward onto the celestial sphere. The
Earth’s rotation axis, which passes through the north and south poles of the
Earth, intersects the celestial sphere at the north celestial pole (labeled as
NCP ) and the south celestial pole (labeled as SCP ). The north celestial
pole is at the zenith for an observer at the Earth’s north pole; more generally,
for an observer at a latitude north of the equator, it will be at an altitude of
ϕ and azimuth of 0◦. The projection of the Earth’s equator onto the celestial
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4.4. The equatorial system

sphere is called the celestial equator. The celestial equator passes through
the zenith for an observer on the Earth’s equator.

On the Earth’s surface, a point’s latitude is its angular distance north or
south of the equator. Similarly, on the celestial sphere, a point’s declination (δ)
is its angular distance north or south of the celestial equator. For points north
of the celestial equator, the declination is positive (0◦ < δ ≤ 90◦), and for points
south of the celestial equator, the declination is negative (−90◦ ≤ δ < 0◦).

Right ascension α is analogous to longitude and is measured eastward
along the celestial equator from the vernal equinox (γ) to its intersection
with the object’s hour circle (the great circle passing through the object being
considered and through the north celestial pole). Right ascension is traditionally
measured in hours, minutes, and seconds. The coordinates of the right ascension
and declination are also indicated in the figure below. Since the equatorial
coordinate system is based on the celestial equator and the vernal equinox,
changes in the latitude and longitude of the observer do not affect the values of
right ascension and declination. Values of and are similarly unaffected by the
annual motion of Earth around the Sun.

Figure 4.9: Equatorial coordinate system

We used a unique point to define the Azimuth angle in horizontal coordinates,
that specific point is North. Having that in mind, we also know that the NCP
is pointing towards the North. We can draw both coordinates on a sphere for
an observer.

If we sketch both coordinates on a single sphere, then the celestial equator
intersects the horizon circle in two points West and East. Points P and Z are
the poles of the celestial equator and the horizon respectively. But W lies on
both these great circles so that W is 90◦ from the points P and Z. Hence, W
is a pole on the great circle ZPN and must, therefore, be 90◦ from all points
on it—in particular from N and S. Hence, it is the west point. By a similar
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4. Spherical Astronomy

argument, E is the east point. Any great semicircle through P and Q is called
a meridian. The meridian through the celestial object X is the great semicircle
PXBQ cutting the celestial equator in B.

Figure 4.10: Equatorial coordinate system for an observer on Earth

In particular, the meridian PZTSQ indicated because of its importance by
a heavier line is the observer’s meridian. An observer viewing the sky will
note that all natural objects rise in the east, climbing in altitude until they
transit across the observer’s meridian then decrease in altitude until they set
in the west. A star, in fact, will follow a small circle parallel to the celestial
equator in the arrow’s direction. Such a circle (UXV in the diagram) is called
a parallel of declination and provides us with one of the two coordinates in
the equatorial system. The declination, δ, of the star is the angular distance
in degrees of the star from the equator along the meridian through the star. It
is measured north and south of the equator from 0◦ to 90◦, being taken to be
positive when north. The declination of the celestial object is thus analogous
to the latitude of a place on the Earth’s surface, and indeed the latitude of any
point on the surface of the Earth when a star is in its zenith is equal to the
star’s declination.

A quantity called the north polar distance of the object (X in the figure)
is often used. It is the arc PX.

Obviously,

north polar distance = 90◦ − declination.

It is to be noted that the north polar distance can exceed 90◦. The star,
then, transits at U , sets at V , rises at L and transits again after one rotation
of the Earth. The second coordinate recognizes this. The angle ZPX is called
the hour angle, t, of the star and is measured from the observer’s meridian
westwards (for both north and south hemisphere observers) to the meridian
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4.5. The ecliptic system

through the star from 0h to 24h or from 0◦ to 360◦. Consequently, the hour
angle increases by 24h each sidereal day for a star. Having both coordinates on
the sphere, using Zenith, the North celestial pole, and the star (three points) we
are able to create a spherical triangle (figure below). We need to use spherical
trigonometry to solve any spherical triangle.

Figure 4.11: Coordinate system conversion

A common problem in spherical astronomy is obtaining a star’s coordinates
in one system, given the coordinates in another system. The observer’s latitude
is usually known. For example, we may want to calculate the hour angle of t
and declination δ of a body when its azimuth (east of north) and altitude are
A and h. Assume the observer has a latitude ϕ. We start by writing the cosine
formula:

cos PX = cos PZ cos ZX + sin PZ sin ZX cos PZX
−→ sin δ = sin ϕ sin h + cos ϕ cos h cos A

(4.6)

By using the cosine formula again:

cos ZX = cos PZ cos PX + sin PZ sin PX cos ZPX
−→ sin a = sin ϕ sin δ + cos ϕ cos δ cos t

(4.7)

You could also use four-parts or sine law to solve the spherical triangle. Based
on the known parameters in the triangle, you should decide which formulas to
use in order to solve the triangle.

4.5 The ecliptic system

The orbital plane of the Earth, the ecliptic, is the reference plane of another
important coordinate frame. The ecliptic can also be defined as the great circle
on the celestial sphere described by the Sun over the course of one year. This
frame is used mainly for planets and other bodies of the solar system. The
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4. Spherical Astronomy

orientation of the Earth’s equatorial plane remains invariant, unaffected by
its annual motion. In spring, the Sun appears to move from the southern
hemisphere to the northern one. The time of this remarkable event as well as
the direction of the Sun at that moment is called the vernal equinox. At the
vernal equinox, the Sun’s right ascension and declination are zero.

Figure 4.12: The plane of Earth’s orbit seen edge-on

The two quantities specifying the position of an object on the celestial
sphere in this system are ecliptic longitude and ecliptic latitude. In figure 4.13
below a great circle arc through the pole of the ecliptic K and the celestial
object X meets the ecliptic in point D. Then the ecliptic longitude, λ, is
the angle between γ and D, measured from 0◦ to 360◦ along the ecliptic in the
eastwards direction, that is in the direction in which right ascension increases.
The ecliptic latitude, β, is measured from D to X along the great circle arc
DX, being measured from 0◦ to 90◦ north or south of the ecliptic. It should be
noted that the north pole of the ecliptic, K, lies in the hemisphere containing
the north celestial pole. It should also be noted that ecliptic latitude and
longitude are often referred to as celestial latitude and longitude.

Figure 4.13: The Celestial sphere used for coordinate system conversion

32



4.5. The ecliptic system

Let’s assume the equatorial coordinates of a star are known, and we want
to determine its ecliptic coordinates. This means α and δ are given. Using the
spherical triangle above, we can use cosine law:

cos (90 − β) = cos ϵ cos (90 − δ) + sin ϵ sin (90 − δ) cos (90 + α)
−→ sin β = cos ϵ sin δ − sin ϵ cos δ cos α

(4.8)

By using the cosine formula again:

cos (90 − δ) = cos ϵ cos (90 − β) + sin ϵ sin (90 − β) cos (90 − λ)
−→ sin δ = cos ϵ sin β − sin ϵ cos β cos λ

−→ sin λ = sin δ−cos ϵ sin β
sin ϵ cos β

(4.9)
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CHAPTER 5

Celestial Mechanics

By applying Newton’s laws of motion and the law of universal gravitation,
we are able to comprehend and analyze the complex movements of celestial
objects within the solar system. The celestial objects that we can observe
include the planets, comets, natural satellites, and man-made satellites that are
orbiting around their respective planets. The analytical process is simplified
by making two assumptions. The first assumption is that we only consider the
gravitational force between the orbiting body, such as the Earth, and the central
body, which is the Sun. We disregard the gravitational forces exerted by other
celestial bodies, such as other planets, to focus solely on the interaction between
the orbiting and central body. Secondly, we assume that the central body is
significantly more massive than the orbiting body, enabling us to disregard the
central body’s motion caused by their mutual attraction. Although both objects
actually orbit around their common center of mass, if one of the celestial bodies
is much more massive than the other, the center of mass can be approximated
to be at the center of the heavier object.

5.1 Newton’s Law of Gravitation

Gravitational force is one of the four fundamental forces of nature, along with
electromagnetic force, weak nuclear force, and strong nuclear force. It is the
force that causes objects with mass to be attracted to one another. In this
article, we will explore the concept of gravitational force and its mathematical
description.
The English physicist Sir Isaac Newton was the first to describe the nature
of gravitational force. He formulated his law of gravitation in 1687, which
states that the force of attraction between two objects with masses m1 and m2,
separated by a distance r, is given by:

FG = G
m1m2

r2 , (5.1)

where FG is the gravitational force, G is the gravitational constant, and r is the
distance between the two objects. The value of G is approximately 6.674×10−11

N m2/kg2.
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Gravitational Field

The gravitational force can also be described in terms of a gravitational field.
A gravitational field is a region of space where an object with mass experiences
a force due to the presence of another object with mass. The gravitational field
strength at a point in space is defined as the force per unit mass experienced
by a small test mass placed at that point.
The gravitational field strength at a distance r from a point mass M is given
by:

g = GM

r2 , (5.2)

where G is the gravitational constant. The gravitational field strength is a
vector quantity, pointing towards the point mass M .

Gravitational Potential Energy

Gravitational force is a conservative force, meaning that the work done by the
force in moving an object from one point to another is independent of the path
taken. The gravitational potential energy of an object at a point in space is the
amount of work required to move the object from an infinite distance to that
point, against the gravitational force.
The gravitational potential energy U of an object of mass m at a distance r
from a point mass M is given by:

U = −GMm

r
, (5.3)

The negative sign indicates that the gravitational force is attractive, and the
potential energy is lower at closer distances.

5.2 Linear Momentum

Linear momentum, also known as linear motion, is the product of an object’s
mass and its velocity. It is a vector quantity, meaning it has both magnitude
and direction. The formula for linear momentum is:

p = mv, (5.4)

where p is the linear momentum, m is the mass of the object, and v is its
velocity.
Linear momentum is conserved in an isolated system, meaning that the total
linear momentum of a system remains constant if no external forces act upon
it. This principle is known as the law of conservation of linear momentum.

5.3 Angular Speed

Angular speed is the rate at which an object rotates or revolves about a fixed
axis. It is a scalar quantity, meaning it has magnitude but no direction. The
formula for angular speed is:
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5.4. Angular Momentum

ω = θ

t
, (5.5)

where ω is the angular speed, θ is the angular displacement of the object, and t
is the time taken for the object to complete the rotation.
Angular speed is measured in radians per second (rad/s). It is important to
note that angular speed is not the same as linear speed, which is the distance
traveled per unit time.

5.4 Angular Momentum

Angular momentum is the rotational equivalent of linear momentum. It is the
product of an object’s moment of inertia and its angular velocity. The formula
for angular momentum is:

L = Iω, (5.6)

where L is the angular momentum, I is the moment of inertia of the object,
and ω is its angular velocity.
Angular momentum can also be expressed as the product of the mass of the
object, its tangential velocity, and the distance from the axis of rotation:

L = mrv, (5.7)

where m is the mass of the object, v is its tangential velocity, and r is the
distance from the axis of rotation.
Angular momentum is also a vector quantity, meaning it has both magnitude
and direction. Its direction is perpendicular to the plane of rotation. The
moment of inertia is a measure of an object’s resistance to rotational motion
and depends on both the mass and the distribution of mass relative to the axis
of rotation.

Like linear momentum, angular momentum is conserved in an isolated system.
This principle is known as the law of conservation of angular momentum. The
law states that if no external torques act upon an isolated system, the total
angular momentum of the system remains constant. Mathematically, this can
be expressed as:

dL

dt
= τnet, (5.8)

where dL/dt is the rate of change of angular momentum and τnet is the net
external torque acting on the system. If there is no net external torque, then
dL/dt is zero and the angular momentum of the system is conserved.

5.5 Conservation of Angular Momentum

The law of conservation of angular momentum has many important applications
in physics. For example, it can be used to explain the behavior of spinning tops,
the motion of planets around the sun, and the behavior of particles in quantum
mechanics.

37
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One important application of conservation of angular momentum is in
understanding the behavior of rotating systems. For example, when an ice
skater pulls their arms in, their moment of inertia decreases, causing their
angular velocity to increase, and their angular momentum to remain constant.
This principle is also used in designing objects such as satellites and gyroscopes,
which rely on the conservation of angular momentum to maintain their stability
and orientation in space.
Another important application of conservation of angular momentum is in the
study of collisions. When two objects collide, their angular momentum may
change due to external torques, such as friction. However, if the collision is
elastic and there are no external torques, the total angular momentum of the
system will remain constant.

Overall, the law of conservation of angular momentum is a fundamental
principle in physics that helps to explain the behavior of rotating systems and
the interactions between objects in motion.

5.6 Kepler’s laws

Kepler’s laws, which describe the motions of planets, were originally deduced
by Johannes Kepler from observations of the planet Mars. However, these
laws can also be derived from Isaac Newton’s laws of motion and his law
of gravitation, which provide an empirical basis for understanding planetary
motion. Additionally, the application of Newton’s laws of motion and law of
universal gravitation extends beyond just the study of celestial bodies in our
solar system. These laws can be applied to the study of the universe as a
whole, including the behavior of galaxies and the evolution of the universe itself.
They also have practical applications, such as in the design and operation of
spacecraft and satellites. By understanding how gravity works and how objects
move in space, scientists and engineers can plan and execute space missions
with incredible precision, including everything from sending probes to explore
distant worlds to placing satellites in orbit for communication and navigation
purposes.

1. Kepler’s First Law: All planets follow elliptical orbits with the Sun
at one of the two foci. Newton realized that there is a direct mathematical
relationship between inverse-square ( 1

r2 ) forces and elliptical orbits. Figure 4.1
illustrates a typical elliptical orbit, where the orbiting body is located at polar
coordinates (r, θ) and the origin is at the central body. An elliptical orbit is
characterized by two parameters: the semimajor axis a and the eccentricity e.
The distance from the center of the ellipse to either focus is ea. A circular orbit
is a special case of an elliptical orbit with e = 0, where the two foci merge to a
single point at the center of the circle. For example, Earth follows an elliptical
orbit with an eccentricity of approximately 0.0167.
The maximum distance Ra of the orbiting body from the central body is
indicated by the prefix apo− (or sometimes ap−), as in aphelion (the maximum
distance from the Sun) or apogee (the maximum distance from Earth). Similarly,
the closest distance Rp is indicated by the prefix peri−, as in perihelion or
perigee. As you can see from Figure 4.1:

Ra = a(1 + e), Rp = a(1 − e). (5.9)
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5.6. Kepler’s laws

Figure 5.1: A planet of mass m moving in an elliptical orbit around the Sun
with mass M

And for circular orbits Ra = Rp.

2. The Law of Areas: dictates that, during equal intervals of time, the
imaginary line that connects a planet to its central star will cover equal areas.
Figure 4.2 serves to visually demonstrate this concept, and implies that an
orbiting object will move with greater velocity when it is nearer to the central
body than when it is further away. It can be proven that the Law of Areas is
in fact equivalent to the Law of Conservation of Angular Momentum.

If we examine the small area increment A that is traversed during a time
interval t, as illustrated in Figure 4.2, we can see that the area of the triangular
wedge is roughly equal to half of its base, r∆θ multiplied by its height r. We
can then calculate the rate at which this area is swept out:

dA

dt
= lim

∆t→0

∆A

∆t
= lim

∆t→0

1
2r2 ∆θ

∆t
= 1

2r2ω (5.10)

If we make the assumption that the more massive body M can be considered
stationary, then the angular momentum of the orbiting body m can be described
relative to the origin at the central body as:

Lz = Iω = mr2ω (5.11)

Thus:
dA

dt
= Lz

2m
(5.12)

If the M and m system is isolated and there is no external torque acting
on it, then the angular momentum Lz remains constant. This means that the
derivative of the area A with respect to time t is also constant, as stated in the
equation. Consequently, during each interval of time dt, the line connecting m
and M sweeps out an equal area dA, which confirms Kepler’s second law. The
increase in speed of a comet as it passes close to the Sun is an example of this
effect and is directly related to the law of conservation of angular momentum.
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Figure 5.2: (a) The law of areas is demonstrated by the equal shaded areas,
which are traversed by a line connecting a planet to the Sun in equal time
intervals. (b) During a time interval t, the line connecting a planet to the Sun
sweeps through an angle theta (θ) while covering an area A.

2. The Law Periods: One of the fundamental laws of planetary motion
is that the square of a planet’s orbital period around the Sun is directly
proportional to the cube of its mean distance from the Sun. This relationship
holds true for circular orbits as well. It is important to note that the force
of gravity acts as the centripetal force for the circular motion. Therefore, the
planet’s acceleration is always directed towards the center of the orbit. This
allows us to use the principles of circular motion to derive this relationshi:

GMm

r2 = m
v2

r
. (5.13)

Then replacing the speed v with 4πr/T , where T is the rotational period (the
time for a full orbit), we obtain:

T 2 = ( 4π2

GM
)r3. (5.14)

The same outcome can be achieved for orbits that are elliptical, where the
radius r is substituted with the semi-major axis a. The constant ratio between
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5.7. Velocities in Different Orbits in Celestial Mechanics

T 2 and a3 is determined by the quantity 4π2/GM , which applies to all planets
orbiting the Sun. This relationship is confirmed by the data presented in Table
4.1. By measuring T and a for an orbiting body, we can calculate the mass of
the central body, regardless of the orbiting body’s mass. It should be noted that
this method does not provide any information about the mass of the orbiting
body itself.

Planet Semi-major Axis (1010 m) Period (yr) T 2/a3 (10−34 yr2

m3 )
Mercury 5.79 0.241 2.99
Venus 10.8 0.615 3.00
Earth 15.0 1.00 2.96
Mars 22.8 1.88 2.98

Jupiter 77.8 11.9 3.01
Saturn 143 29.5 2.98
Uranus 287 84.0 2.98

Neptune 450 164.8 2.99
Pluto 591 247.7 2.99

Table 5.1: Table of Planetary Data

5.7 Velocities in Different Orbits in Celestial Mechanics

In celestial mechanics, the motion of a celestial body is often described in terms
of its orbit around another celestial body. There are four types of conic section
orbits: circular, elliptical, parabolic, and hyperbolic. Each orbit has a specific
set of characteristics, including its velocity and energy.

Circular Orbit

A circular orbit is a special case of an elliptical orbit where the semi-major
axis a is equal to the radius r. Kepler’s third law states that the square of the
orbital period T is proportional to the cube of the semi-major axis a:

T 2 = 4π2

GM
a3. (5.15)

The velocity of a circular orbit can be derived by equating the centripetal force
Fc with the gravitational force Fg:

Fc = Fg, (5.16)

which can be written as:

mv2

r
= GMm

r2 . (5.17)

Simplifying this expression, we obtain the velocity of a circular orbit:

v =
√

GM

r
. (5.18)
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Elliptical Orbit

An elliptical orbit is described by its semi-major axis a and eccentricity e, where
e is the ratio of the distance between the foci of the ellipse to the length of
the major axis. Kepler’s second law states that the line joining a planet and
the Sun sweeps out equal areas in equal times, implying that the orbital speed
varies along the ellipse.

From conservation of angular momentum, the specific angular momentum h
is given by

h = rv⊥ = constant, (5.19)

where v⊥ is the component of velocity perpendicular to the radius vector. For
an orbit under a central gravitational force, h can be expressed in terms of a
and e as

h =
√

GMa(1 − e2), (5.20)

where M is the mass of the central body.
The equation of the orbit in polar coordinates (r, θ) is

r = a(1 − e2)
1 + e cos θ

, (5.21)

where θ is the true anomaly — the angle measured from the pericenter.
Using conservation of energy, the vis-viva equation gives the orbital speed

at any point:

v =

√
GM

(
2
r

− 1
a

)
=

√
2GM

r
− GM

a
. (5.22)

This expression shows that the orbital speed v depends on both the
instantaneous distance r and the semi-major axis a, and is maximum at
pericenter and minimum at apocenter.

Parabolic Orbit

A parabolic orbit is an orbit in which the distance between the two bodies
approaches infinity. The velocity of a parabolic orbit can be derived using the
concept of specific energy, which is the sum of the kinetic and potential energy
per unit mass of the orbiting body. For a parabolic orbit, the specific energy is
zero, which means that the kinetic energy is equal in magnitude to the potential
energy. Thus, the total energy is also zero.

Using the conservation of energy, we can equate the kinetic energy to the
negative potential energy:

1
2mv2 = −GMm

r
. (5.23)

Solving for the velocity, we obtain the velocity of a parabolic orbit:

v =
√

2GM

r
. (5.24)
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In conclusion, the velocity of conic section orbits can be derived using the
principles of classical mechanics and the laws of gravity. Circular orbits have
a constant velocity, while elliptical orbits have varying speeds along the orbit.
Parabolic and hyperbolic orbits have specific energies that result in unique
velocities. By understanding the velocity of conic section orbits, we can better
understand the motion of celestial objects and their interactions with each
other.
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CHAPTER 6

Practice Problems: Fundamental
Astrophysics

1. Solar Flux & The Solar Constant
The nominal luminosity of the Sun is defined by the IAU as LN

⊙ =
3.828 × 1026 W. Assuming the Earth’s orbit is circular with a radius
of 1 au = 1.496 × 1011 m, calculate the solar flux received at the top of
Earth’s atmosphere (the Solar Constant).

Solution:
The flux F at a distance r from an isotropically radiating source is given
by the inverse-square law:

F = L

4πr2

Substituting the IAU nominal constants:

F = 3.828 × 1026 W
4π(1.496 × 1011 m)2

Calculating the denominator: 4π(1.496)2 × 1022 ≈ 2.812 × 1023 m2.

F ≈ 3.828
2.812 × 103 W m−2 ≈ 1361 W m−2

Answer: The Solar Constant is approximately 1361 W m−2 .

2. Stellar Lifetimes
Estimate the main-sequence lifetime of a 10M⊙ star. Assume the Mass-
Luminosity relation follows L ∝ M3.5 for this mass range, and that the
Sun’s main-sequence lifetime is t⊙ ≈ 1010 years.

Solution:
The main-sequence lifetime tMS is proportional to the fuel supply (M)

45



6. Practice Problems: Fundamental Astrophysics

divided by the rate of consumption (L):

tMS ∝ M

L

Substituting the relation L ∝ M3.5:

tMS ∝ M

M3.5 ∝ M−2.5

Scaling relative to the Sun:

t⋆

t⊙
=

(
M⋆

M⊙

)−2.5

For M⋆ = 10M⊙:
t⋆ ≈ 1010 yr × (10)−2.5

Since 10−2.5 = 1
102

√
10 ≈ 1

316 :

t⋆ ≈ 1010

316 ≈ 3.16 × 107 yr

Answer: The star will remain on the main sequence for approximately
32 million years.

3. Magnitude System
A star has an apparent magnitude of m⋆ = 2.00. Given the Sun’s apparent
magnitude is m⊙ = −26.74 and the Solar Constant is F⊙ = 1361 W m−2,
determine the flux from this star incident on Earth.

Solution:
The magnitude system is defined logarithmically based on the flux ratio:

m1 − m2 = −2.5 log10

(
F1

F2

)
⇒ F⋆

F⊙
= 10−0.4(m⋆−m⊙)

Substituting the values:

∆m = 2.00 − (−26.74) = 28.74

F⋆

F⊙
= 10−0.4(28.74) = 10−11.496 ≈ 3.19 × 10−12

Solving for F⋆:

F⋆ = F⊙ × (3.19 × 10−12) = 1361 × 3.19 × 10−12 W m−2

F⋆ ≈ 4.34 × 10−9 W m−2

Answer: The flux received from the star is 4.3 × 10−9 W m−2 .
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4. Telescope Limiting Magnitude
Determine the theoretical limiting magnitude of an 8-inch (Dt = 203 mm)
telescope. Assume the dark-adapted human eye has a pupil diameter
De = 6 mm and a naked-eye limiting magnitude of me = 6.5. Ignore
atmospheric extinction and optical transmission losses.

Solution:
The light-gathering power is proportional to the area of the aperture
(A ∝ D2). The magnitude gain is related to the ratio of the areas:

mt = me + 2.5 log10

(
Areat

Areae

)
= me + 2.5 log10

(
Dt

De

)2

Simplifying:
mt = me + 5 log10

(
Dt

De

)
Substituting values:

mt = 6.5 + 5 log10

(
203
6

)
= 6.5 + 5 log10(33.83)

mt ≈ 6.5 + 5(1.529) = 6.5 + 7.65 = 14.15

Answer: The limiting magnitude is approximately 14.2 .

5. Redshift Hubble’s Law
The Ca II H and K lines have rest wavelengths λH,0 = 3968.5 Å and
λK,0 = 3933.7 Å. In a galaxy belonging to cluster Abell 2065, these lines
are observed at λH,obs = 4255.0 Å and λK,obs = 4217.6 Å.

a) Calculate the redshift z of the galaxy.
b) Determine the radial velocity and distance to the galaxy using

H0 = 73 km s−1 Mpc−1. Discuss whether a relativistic calculation is
required.

Solution:
(a) Redshift Calculation
The redshift is defined as z = λobs−λ0

λ0
. For the H line:

zH = 4255.0 − 3968.5
3968.5 ≈ 0.07219

For the K line:
zK = 4217.6 − 3933.7

3933.7 ≈ 0.07217

We adopt the average: z ≈ 0.0722 .

47



6. Practice Problems: Fundamental Astrophysics

(b) Velocity and Distance
Check for Relativistic Regime: Since z ≈ 0.07 (meaning v ≈ 0.07c), the
object is moving at significant speed.
Method 1: Classical Approximation (v = cz)

v ≈ (3.00 × 105 km/s)(0.0722) = 21, 660 km/s

D = v

H0
= 21660

73 ≈ 297 Mpc

Method 2: Relativistic Doppler (Preferred)

v

c
= (1 + z)2 − 1

(1 + z)2 + 1 = (1.0722)2 − 1
(1.0722)2 + 1 ≈ 0.1496

2.1496 ≈ 0.0696

vrel ≈ 0.0696c ≈ 20, 880 km/s

Drel = 20880
73 ≈ 286 Mpc

Note: The difference is approx 10 Mpc. For IOAA precision, the relativistic
method is safer, though the classical is often accepted for z < 0.1 unless
specified.

6. Planetary Configurations
We are making an observation on 1 February 2022. Mars is in opposition,
and at the same time Jupiter is in western quadrature.

a) Determine the date of the next conjunction of Mars.
b) Determine the date of the next opposition of Jupiter.
c) Discuss when all three planets would lie on one side of the Sun in

a line (i.e., Mars and Jupiter in opposition with Earth at the same
time). When does this approximately happen?

Solution:
(a) Next Conjunction of Mars:
The synodic period of Mars is

PS(Mars) = 780 days.

Conjunction and opposition are separated by half the synodic period:

PS

2 = 390 days.

Adding this to 1 Feb 2022 gives

1 Feb 2022 + 390 d = 26 Feb 2023.
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(b) Next Opposition of Jupiter:
Jupiter’s synodic period is PS(Jup) = 398.9 d. At western quadrature,
the elongation is 90◦; to reach opposition (180◦), the relative motion must
cover 90◦, or one-quarter of a synodic period:

∆t = 90◦

360◦ × PS = 1
4 × 398.9 = 99.7 d.

Date = 1 Feb 2022 + 100 d ≈ 12 May 2022.

(c) Triple Alignment (Earth–Mars–Jupiter collinearity):
The condition for repeated near-alignment is found from the least common
multiple of the synodic periods:

n1PS(Mars) ≈ n2PS(Jup),

which gives roughly

n1 = 17, n2 = 33, period ≈ 17–18 years .

Hence, Earth, Mars, and Jupiter align on the same side of the Sun
approximately every 17 years (e.g., 2001, 2018, 2035, 2052).

7. Orbital Elements of Mars
The time interval between two successive oppositions of Mars is S =
779.9 d. Calculate the semi-major axis of Mars’ orbit.

Solution:
The synodic period S is related to the sidereal periods PE (Earth) and
PM (Mars) by:

1
S

= 1
PE

− 1
PM

.

Rearranging:
1

PM
= 1

PE
− 1

S
.

Substitute PE = 365.256 d, S = 779.9 d:

1
PM

= 0.0027378 − 0.0012822 = 0.0014556 d−1,

PM = 1
0.0014556 = 687.0 d = 1.881 yr.

From Kepler’s third law (a3 = P 2 when P in years and a in au):

a = P 2/3 = (1.881)2/3 = 1.524 au .

This matches the IAU nominal semi-major axis of Mars.
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8. High-Redshift Quasar
The quasar SDSS 1030+0524 produces a hydrogen emission line of rest
wavelength λrest = 121.6 nm. On Earth, it is observed at λobs = 885.2 nm.

Solution:
(a) Redshift (z):

z = λobs − λrest

λrest
= 885.2 − 121.6

121.6 = 6.28.

z = 6.28

(b) Radial Velocity (v):
At such large z, the classical Doppler formula v ≃ cz is invalid. We use
the special-relativistic relation:

v

c
= (1 + z)2 − 1

(1 + z)2 + 1 = (7.28)2 − 1
(7.28)2 + 1 = 0.963.

v = 0.963 c = 2.89 × 105 km s−1.

(c) Cosmological Distance (Approximation):
For z ≳ 1, the linear Hubble law v = H0d no longer applies. Nevertheless,
using it as an exercise:

d = v

H0
= 0.963 c

70 km s−1 Mpc−1 = 2.89 × 105

70 = 4.13 × 103 Mpc.

dnaive ≈ 4.1 Gpc.

Comment: In a ΛCDM cosmology, the actual comoving distance for
z = 6.28 is about 9.5 Gpc, corresponding to a look-back time of ∼ 12.8
Gyr, near the end of cosmic reionization.

9. Spherical Trigonometry
On the celestial sphere (R = 1), each triangle is defined by three sides
(a, b, c), which are arcs of great circles, and the opposite angles (A, B, C).
Using the spherical laws of sines and cosines, determine all unknown
elements and compute the spherical excess (area E) for each triangle.

a) a = 34◦ 46′, b = 27◦ 22′, C = 72◦ 31′

b) b = 98◦ 18′, C = 24◦ 49′, A = 68◦ 36′

c) a = 14◦ 03′, b = 53◦ 32′, c = 124◦ 14′

d) A = 23◦ 32′, B = 102◦ 38′, C = 34◦ 44′
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Solution:
Key Relations:

Law of Cosines (sides): cos c = cos a cos b + sin a sin b cos C,

Law of Sines: sin A

sin a
= sin B

sin b
= sin C

sin c
,

Spherical Excess: E = (A + B + C − 180◦) π

180 .

(a) Triangle I Given: a = 34◦46′, b = 27◦22′, C = 72◦31′.

cos c = cos a cos b + sin a sin b cos C ⇒ c = 35◦21′.

A = 42◦48′, B = 31◦26′.

E = (42◦48′ + 31◦26′ + 72◦31′ − 180◦) π

180 = 0.0042 sr.

A = 42◦48′, B = 31◦26′, c = 35◦21′, E = 0.0042 sr

(b) Triangle II Given: A = 68◦36′, b = 98◦18′, C = 24◦49′.

cos B = − cos A cos C + sin A sin C cos b ⇒ B = 60◦44′.

a = 82◦01′, c = 38◦00′.

E = (68◦36′ + 60◦44′ + 24◦49′ − 180◦) π

180 = 0.0806 sr.

B = 60◦44′, a = 82◦01′, c = 38◦00′, E = 0.0806 sr

(c) Triangle III Given: a = 14◦03′, b = 53◦32′, c = 124◦14′.
Corrected (consistent) solution:

A = 154◦22′, B = 122◦30′, C = 122◦16′.

E = (154◦22′ + 122◦30′ + 122◦16′ − 180◦) π

180 = 0.0245 sr.

A = 154◦22′, B = 122◦30′, C = 122◦16′, E = 0.0245 sr

(d) Triangle IV Given: A = 23◦32′, B = 102◦38′, C = 34◦44′.

cos a = − cos B cos C + sin B sin C cos A

⇒ a = 30◦32′, b = 141◦48′, c = 67◦44′.

E = (23◦32′ + 102◦38′ + 34◦44′ − 180◦) π

180 = 0.2796 sr.

a = 30◦32′, b = 141◦48′, c = 67◦44′, E = 0.2796 sr
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10. Great Circle Navigation
Two cities A and B lie on the same parallel of latitude ϕ = 43◦39′ N and
are separated by a longitude difference of ∆λ = 127◦22′.

a) Calculate their distance apart along the parallel (i.e. along the small
circle of latitude common to both cities).

b) Find the length of the great–circle distance AB between the two
cities.

c) Determine the highest latitude reached by the great circle passing
through the two cities.

Solution:
(a) Small-Circle Distance:

dsmall = R cos ϕ ∆λrad

dsmall = 6371 km × cos(43◦39′) ×
(

127.37◦ × π

180

)
dsmall = 1.025 × 104 km ≈ 10 248 km

(b) Great-Circle Distance: For two points at equal latitude, the
spherical cosine law gives

cos d = sin ϕ1 sin ϕ2 + cos ϕ1 cos ϕ2 cos(∆λ),

so that

cos d = (sin 43◦39′)2 + (cos 43◦39′)2 cos(127◦22′) = 0.159.

d = arccos(0.159) = 80.87◦.

dgc = R drad = 6371 × 80.87◦π

180 = 8.99 × 103 km .

(c) Highest Latitude Along the Great Circle (Vertex): The
vertex lies midway in longitude. In the right spherical triangle PAV
(Pole–City–Vertex):

tan(PV ) = cos P tan(PA),
where P = ∆λ

2 = 63◦41′ and PA = 90◦ − ϕ = 46◦21′.

tan(PV ) = cos(63◦41′) tan(46◦21′) = 0.464, tan(ϕmax) = 1
0.464 = 2.15.

ϕmax = 65◦04′ N.

Interpretation: Although the two cities share the same latitude, the
great-circle path between them deviates poleward, reaching a maximum
latitude of 65◦ N. This is about 12◦ north of their common parallel,
illustrating why aircraft routes between mid-latitude cities appear to
curve toward the pole on flat maps.
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11. Celestial Coordinates: Rigel in Toronto
An observer is tracking Rigel (δR = −8◦12′, αR = 5h14m) in Toronto
(ϕT O = 43.65◦ N).

a) Determine the maximum altitude of Rigel in Toronto’s sky.
b) Find the Azimuth of Rigel at rising and at setting.
c) Find the Azimuth and Hour Angle when Rigel’s altitude is h = 8◦.
d) Find the altitude and Azimuth when t = 1h53m.
e) Determine the angle that Rigel’s diurnal path makes with the horizon

at rising or setting.

Solution:
(a) Maximum Altitude (Upper Culmination):

hmax = 90◦ − ϕ + δ

hmax = 90◦ − 43.65◦ − 8.20◦ = 38.15◦.

(b) Azimuth at Rise and Set (h = 0): At the horizon, sin h = 0, and
the relation between azimuth and declination is

cos A = sin δ

cos ϕ
.

cos A = sin(−8.2◦)
cos(43.65◦) = −0.197.

A = arccos(−0.197) = 101.4◦.

Arise = 101.4◦, Aset = 258.6◦.

(c) Position at Altitude h = 8◦:
Hour Angle:

sin h = sin ϕ sin δ + cos ϕ cos δ cos t

cos t = sin h − sin ϕ sin δ

cos ϕ cos δ
= 0.332 ⇒ t = 70.6◦ = 4.71h.

t = 4h42m.

Azimuth:

cos A = sin δ − sin ϕ sin h

cos ϕ cos h
= −0.1426 − (0.690)(0.1392)

(0.724)(0.990) = −0.333.

A = 109.5◦ (rising), 250.5◦ (setting).

(d) Position for t = 1h53m:
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Convert hour angle: t = 1.883h = 28.25◦.

sin h = sin ϕ sin δ + cos ϕ cos δ cos t

sin h = (0.690)(−0.143) + (0.724)(0.990) cos(28.25◦) = 0.5326.

h = 32.2◦.

Since t > 0 (star west of meridian):

cos A = sin δ − sin ϕ sin h

cos ϕ cos h
= −0.1426 − (0.690)(0.5326)

(0.724)(0.846) = −0.833.

A = 360◦ − arccos(−0.833) = 213.6◦.

(e) Angle Between Path and Horizon (η):
At the horizon (h = 0), this angle equals the parallactic angle:

cos η = sin ϕ

cos δ
.

cos η = sin(43.65◦)
cos(−8.2◦) = 0.697.

η = 45.8◦.

12. Ecliptic Coordinates of Rigel
Determine the ecliptic coordinates (λ, β) of Rigel, given its equatorial
coordinates

δR = −8◦12′, αR = 5h14m.

Solution:
The obliquity of the ecliptic (J2000) is ε = 23.44◦.
Step 1: Convert to radians.

α = 5h14m = 5.233h × 15 = 78.50◦, δ = −8.20◦.

Step 2: Transformation relations.

sin β = sin δ cos ε − cos δ sin ε sin α,

tan λ = sin α cos ε + tan δ sin ε

cos α
.

Step 3: Substitution and calculation.

sin β = (sin −8.20◦)(cos 23.44◦) − (cos −8.20◦)(sin 23.44◦)(sin 78.50◦),
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sin β = −0.143(0.917) − 0.990(0.398)(0.979) = −0.515,

β = −31.1◦.

tan λ = (sin 78.50◦)(cos 23.44◦) + (tan −8.20◦)(sin 23.44◦)
cos 78.50◦ = 4.23,

λ = 76.7◦.

Answer:
λR = 76.7◦, βR = −31.1◦.

Interpretation: Rigel lies in the southern ecliptic hemisphere, well below
the ecliptic plane, near longitude 77◦, corresponding to the region of the
constellation Orion.

13. Rising Point of a Star on the Horizon
Show that the point on the horizon at which a star rises has an azimuth
given by:

A = sin−1(sec ϕ sin δ),
where ϕ is the observer’s latitude and δ the star’s declination.

Solution:
The altitude of a celestial object at hour angle H is related to its declination
δ and the observer’s latitude ϕ by:

sin h = sin ϕ sin δ + cos ϕ cos δ cos H.

At the instant of rising or setting, the object lies on the horizon (h = 0),
so

0 = sin ϕ sin δ + cos ϕ cos δ cos H.

Rearranging for cos H:

cos H = − tan ϕ tan δ.

This relation gives the hour angle of rise and set, which is symmetric
about the meridian.
Now, the corresponding azimuth A of the rising point (measured from the
north point eastward) satisfies the horizon condition (h = 0):

cos A = sin δ

cos ϕ
.

Taking the inverse sine gives

A = sin−1(sec ϕ sin δ).
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Result:
A = sin−1(sec ϕ sin δ) .

Interpretation: This formula shows how far north or south of east a
star rises.
- If δ = 0, the star rises exactly due east (A = 90◦).
- For δ > 0, the rising point shifts north of east.
- For δ < 0, it shifts south of east.
The dependence on sec ϕ shows that the shift is greater for observers at
higher latitudes.

14. Vega’s Motion in Toronto’s Sky
We have the coordinates of Vega: δV = 38◦47′, αV = 18h36m. An observer
in Toronto (ϕ = 43.65◦ N) observes this star.

a) Determine the hour angle of Vega at rising and setting.
b) Find the Azimuth of rise and set of Vega on Toronto’s horizon.
c) Determine its maximum altitude in Toronto.
d) Find the total time Vega is above the horizon.
e) Determine approximately the date when Vega rises at the same time

as the Sun.

Solution:
(a) Hour Angle of Rising and Setting:

cos H = − tan ϕ tan δ.

cos H = − tan(43.65◦) tan(38.78◦) = 0.519.

H = arccos(0.519) = 58.7◦ = 3.91h.

Hrise/set = ±3h55m.

(b) Azimuth at Rising and Setting:

cos A = sin δ

cos ϕ
= sin(38.78◦)

cos(43.65◦) = 0.668.

A = arccos(0.668) = 48.1◦.

Arise = 48.1◦, Aset = 311.9◦.
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(c) Maximum Altitude (Upper Culmination):

hmax = 90◦ − ϕ + δ = 90 − 43.65 + 38.78 = 85.1◦.

(d) Total Time Above Horizon: The star is above the horizon for
twice the hour angle interval:

tvis = 2H

15 = 2(58.7)
15 = 7.82h.

tvis = 7h49m.

15. Stellar Parallax and Distance
The annual parallax angle of a star is measured to be p = 0.4′′. What is
the distance to the star in parsecs? Assume the distance is much greater
than the radius of Earth’s orbit.

Solution:
For small parallax angles, the distance d (in parsecs) is related to the
parallax p (in arcseconds) by:

d = 1
p

.

Hence,
d = 1

0.4 = 2.50 pc.

If expressed in SI units for completeness:

p = 0.4′′ = 0.4 × π

180 × 3600 = 1.94 × 10−6 rad,

d = 1 AU
p

= 1.496 × 1011 m
1.94 × 10−6 = 7.7 × 1016 m.

d = 2.50 pc = 7.7 × 1016 m.

16. Comparing Distance and Brightness of Two Stars
Star A has an apparent magnitude of mA = 3.5 and a parallax of
pA = 0.05′′. Star B has an apparent magnitude of mB = 2.0 and a
parallax of pB = 0.02′′. Which star is closer to Earth, and by how much
in parsecs?
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Solution:
The distance to a star in parsecs is related to its parallax p (in arcseconds)
by:

d = 1
p

.

Star A:
dA = 1

0.05 = 20 pc.

Star B:
dB = 1

0.02 = 50 pc.

Hence, Star A is closer to Earth.
Distance Difference:

∆d = dB − dA = 50 − 20 = 30 pc.

Star A is closer by 30 pc.

Brightness Comparison: Assuming both stars have the same intrinsic
luminosity, their apparent magnitudes differ due to the inverse-square law
of flux:

mB − mA = −2.5 log10

(
FB

FA

)
, where FB

FA
=

(
dA

dB

)2
.

Substituting:

mB−mA = −2.5 log10

(
202

502

)
= −2.5 log10(0.16) = −2.5(−0.796) = 1.99.

mB − mA = 1.99.

Conclusion: Star A is closer to Earth by 30 pc but appears dimmer by
approximately 2.0 magnitudes because of its smaller apparent brightness
at a greater distance.

17. Stellar Distance, Magnitude, and Radius
A star has an apparent magnitude of mV = 3.5 and a parallax of p = 0.03′′.

a) Calculate the star’s distance from Earth in parsecs.
b) Determine its absolute magnitude.
c) If the star’s luminosity is L = 102L⊙, find its radius in units of R⊙.
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Solution:
(a) Distance:

d = 1
p

= 1
0.03 = 33.33 pc.

d = 33.3 pc.

(b) Absolute Magnitude: The distance–modulus relation is

mV − MV = 5 log10

(
d

10

)
.

Substituting values:

MV = 3.5−5 log10

(
33.33

10

)
= 3.5−5(0.5229) = 3.5−2.61 = MV = 0.89.

(c) Stellar Radius: From the Stefan–Boltzmann law,

L = 4πR2σT 4 ⇒ L

L⊙
=

(
R

R⊙

)2 (
T

T⊙

)4
.

Assuming T = T⊙ = 5778 K,

R

R⊙
=

√
L

L⊙
=

√
102 = R = 10 R⊙.

18. Distance and Luminosity from Parallax and Magnitude
A star has an apparent magnitude of mV = 2.5 and a parallax of p = 0.05′′.
Assuming that its absolute magnitude is MV = 0.5, calculate:

a) the distance to the star in parsecs,

b) the luminosity of the star in solar luminosities.

Solution:
(a) Distance:

d = 1
p

.

d = 1
0.05 = 20 pc.

d = 20 pc.
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(b) Luminosity: The luminosity ratio between two stars of absolute
magnitudes MV and M⊙ is

L

L⊙
= 100.4(M⊙−MV ).

Substituting M⊙ = 4.83 and MV = 0.5:

L

L⊙
= 100.4(4.83−0.5) = 101.732 = 53.9.

L = 53.9 L⊙.

19. Telescope Magnification and Angular Magnification
A telescope has a focal length of fobj = 1000 mm and an eyepiece with a
focal length of feye = 20 mm.

a) Determine the magnification of the telescope.
b) If the telescope is used to observe an object at a distance of 2000 m,

estimate the angular magnification.

Solution:
(a) Telescope Magnification:

M = fobj

feye
.

M = 1000
20 = 50.

M = 50.

Thus, the telescope makes the image appear 50 times larger in angular size
than with the naked eye (under normal adjustment, focused at infinity).
(b) Angular Magnification for a Finite Object Distance:
When observing an object at finite distance D = 2000 m, the angular size
of the object as seen directly is approximately

θ ≈ h

D
,

where h is the object’s linear size. Assuming h = 0.01 m for a reference
feature,

θobject = 0.01
2000 = 5 × 10−6 rad.
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The telescope produces an angular magnification of

Mang = M = 50,

so the apparent angular size becomes

θimage = M × θobject = 50 × 5 × 10−6 = 2.5 × 10−4 rad.

θimage = 2.5 × 10−4 rad (angular magnification = 50).

Note: For a telescope focused at infinity, the angular magnification equals
the ratio of the focal lengths M = fobj/feye. For nearby objects, the
effective angular enlargement remains approximately the same provided
D ≫ fobj.

20. Imaging Jupiter with a Telescope
A telescope has a focal length of f = 2000 mm and a plate scale of 1′′ per
pixel. If we wish to image Jupiter, whose apparent angular diameter is
approximately 50′′, determine:

a) the required size of the imaging sensor to capture the entire planet,
b) the total number of pixels across Jupiter’s disk.

Solution:
(a) Pixel Size:
The plate scale of a telescope (in arcseconds per mm) is

S = 206 265
f

.

Given a plate scale of 1′′ per pixel, the corresponding pixel size is

Pixel size = 1′′

S
= f

206 265 = 2000
206 265 = 0.0097 mm/pixel.

Pixel size = 9.7 µm.

(b) Sensor Width Needed to Cover Jupiter:

Angular width of Jupiter = 50′′, Plate scale = 1′′/pixel.

Hence, the number of pixels across Jupiter’s disk is

N = 50′′

1′′/pixel = 50 pixels.

The corresponding physical sensor width is

W = N × (pixel size) = 50 × 0.0097 = 0.485 mm.
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W = 0.49 mm, N = 50 pixels.

(c) Diffraction-Limited Angular Resolution: For a diffraction-limited
telescope, the smallest resolvable angle is

θ = 1.22 λ

D
.

Assuming a wavelength λ = 550 nm and a 200 mm aperture (typical for
a 2000 mm f/10 telescope),

θ = 1.22550 × 10−9

0.20 = 3.35 × 10−6 rad = 0.69′′.

Diffraction limit ≈ 0.7′′ .

Summary:
Pixel size = 9.7 µm,

Sensor width = 0.49 mm,

Pixels across Jupiter = 50,

Resolution limit ≈ 0.7′′.

21. Jupiter’s Angular and Physical Diameter
A telescope with a focal length of f = 1000 mm is used to observe Jupiter,
which has an angular diameter of 40′′.

a) Determine the plate scale of the telescope (arcseconds/mm).
b) Find the apparent diameter of Jupiter in the eyepiece if the

magnification is 100×.
c) Compute Jupiter’s actual diameter in kilometers, assuming its

distance from the Sun is 5.2 AU.

Solution:

(a) Plate Scale: The plate scale (angular size per mm on the focal plane)
is

S = 206 265
f

(′′/mm),

where f is in millimeters. Substituting f = 1000 mm:

S = 206 265
1000 = 206.3′′/mm.

62



(b) Apparent Diameter in the Eyepiece: The apparent angular size
in the eyepiece is

θapp = M × θobject.

With M = 100 and θobject = 40′′:

θapp = 100 × 40′′ = 4000′′ = 1.11◦.

Thus, Jupiter would appear about 1.1◦ wide, roughly twice the angular
size of the full Moon.
(c) Actual Diameter of Jupiter: For small angles,

D = θ × r,

where D is the planet’s true diameter, θ its angular diameter in radians,
and r its distance.
Convert 40′′ to radians:

θ = 40′′ × π

180 × 3600 = 1.94 × 10−4 rad.

Distance to Jupiter:

r = 5.2 AU = 5.2 × 1.496 × 108 = 7.78 × 108 km.

Then,

D = θ r = (1.94 × 10−4)(7.78 × 108) = 1.51 × 105 km.

D ≈ 1.5 × 105 km.

22. Imaging the Full Moon with a Telescope
A telescope with a focal length of f = 1200 mm and a plate scale of
0.5′′/mm is used to observe the full Moon. The telescope’s total field
of view is 30′ (arcminutes). The apparent magnitude of the Moon is
m = −12.7.

a) What is the apparent angular size of the full Moon relative to the
field of view?

b) How many pixels across will the Moon appear on a detector with a
pixel size of 5 µm?

Solution:
(a) Apparent Size of the Moon in the Field of View:
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The angular diameter of the full Moon is approximately

θMoon = 30′ = 1800′′.

The telescope’s plate scale is

S = 0.5′′/mm.

Hence, the Moon’s image diameter on the focal plane is

dimage = θMoon

S
= 1800′′

0.5′′/mm = 3600 mm.

dimage = 3.6 mm.

Thus, the Moon’s image will span a **3.6 mm diameter** circle on the
sensor.
(b) Number of Pixels Across the Moon:
The pixel size is 5 µm = 0.005 mm. Hence, the number of pixels across
the Moon’s diameter is

N = dimage

pixel size = 3.6
0.005 = 720 pixels.

The area (number of pixels covering the full disk) is approximately

Narea = π

(
N

2

)2
≈ π(360)2 = 4.07 × 105 pixels.

Diameter on sensor: 3.6 mm,

Pixels across: 720,

Total pixels (area): 4.1 × 105.

23. Asteroid in Elliptical Orbit Around the Sun
A small asteroid orbits the Sun with a semimajor axis of a = 2.5 AU and
an eccentricity of e = 0.3.

a) Determine the orbital period of the asteroid.

b) Find its orbital speed at perihelion.

c) Find its orbital speed at aphelion.

d) Compute its total orbital energy if its mass is m = 5 × 1010 kg.
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Solution:

(a) Orbital Period:
By Kepler’s Third Law,

T 2 = 4π2

GM⊙
a3.

In astronomical units and years, this simplifies to

T 2 = a3 ⇒ T = a3/2.

T = (2.5)3/2 = 3.95 yr.

T = 3.95 years.

(b) Speed at Perihelion:
Using the vis-viva equation,

v2 = GM⊙

(
2
r

− 1
a

)
,

where rperi = a(1 − e).

rperi = 2.5(1 − 0.3) = 1.75 AU.

Converting AU to meters:

rperi = 1.75(1.496 × 1011) = 2.618 × 1011 m.

Then,

vperi =

√
(6.674 × 10−11)(1.989 × 1030)

(
2

2.618 × 1011 − 1
3.74 × 1011

)
.

vperi = 30.3 km/s.

(c) Speed at Aphelion:
Similarly, rapo = a(1 + e) = 2.5(1.3) = 3.25 AU = 4.867 × 1011 m.

vapo =

√
(6.674 × 10−11)(1.989 × 1030)

(
2

4.867 × 1011 − 1
3.74 × 1011

)
.

vapo = 16.2 km/s.

(d) Orbital Energy:
The total specific orbital energy (energy per unit mass) is

ϵ = −GM⊙

2a
.
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Substituting a = 2.5 AU = 3.74 × 1011 m,

ϵ = − (6.674 × 10−11)(1.989 × 1030)
2(3.74 × 1011) = −1.77 × 108 J/kg.

Total orbital energy:

E = mϵ = (5 × 1010)(−1.77 × 108) = −8.9 × 1018 J.
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APPENDIX A

Math Appendix

In this appendix, we discuss second-degree equations such as:

x2 + y2 = 1 y = x2 + 1 x2

9 + y2

4 = 1 x2 − y2 = 1

which represents a circle, a parabola, an ellipse, and a hyperbola,
respectively. The graph of such an equation in x and y is the set of
all points (x, y) that satisfy the equation; it gives a visual representation
of the equation. Conversely, given a curve in the xy-plane, we may have
to find an equation that represents it, that is, an equation satisfied by
the coordinates of the points on the curve and by no other point. This
is the other half of the basic principle of analytic geometry formulated
by Descartes and Fermat. The idea is that if an algebraic equation can
represent a geometric curve, then the rules of algebra can be used to
analyze the geometric problem.

A.1 Circles

As an example of this type of problem, let’s find an equation of the circle
with radius r and center (h, k). By definition, the circle is the set of all
points P (x, y) whose distance from the center C(h, k) is r. (See Figure
A1.)

Figure A.1: Sample circle
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Thus P are on the circle if and only if |PC| = r. From the distance
formula, we have:

√
(x − h)2 + (y − k)2 = r,

or equivalently, squaring both sides, we get

(x − h)2 + (y − k)2 = r2,

This is the desired equation.

Equation of a circle: An equation of the circle with center (h, k) and
radius r is

(x − h)2 + (y − k)2 = r2,

In particular, if the center is the origin (0, 0), the equation is

x2 + y2 = r2.

A.2 Parabolas

We regard a parabola as a graph of an equation of the form y = ax2+bx+c.
Let’s draw the graph of the parabola y = x2. We set up a table of values,
plot points, and join them by a smooth curve to obtain the graph in
Figure A2.

x y = x2

0 0
± 1

2
1
4

±1 1
±2 4
±3 9

Figure A.2: Sample parabola
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Figure A.3 shows the graphs of several parabolas with equations of the
form y = ax2 for various values of the number a. In each case the vertex,
the point where the parabola changes direction, is the origin. We see that
the parabola y = ax2 opens upward if a > 0 and downward if a < 0 (as
in Figure A.3).

Figure A.3: Graphs of several parabolas with different a values

Notice that if (x, y) satisfies y = ax2, then so does (−x, y). This
corresponds to the geometric fact that if the right half of the graph
is reflected about the y-axis, then the left half of the graph is obtained.
We say that the graph is symmetric with respect to the y-axis.
The graph of an equation is symmetric with respect to the y-axis if the
equation is unchanged when x is replaced by −x.
If we interchange x and y in the equation y = ax2, the result is x = ay2,
which also represents a parabola. (Interchanging x and y amounts to
reflecting about the diagonal line y = x.) The parabola x = ay2 opens to
the right if a > 0 and to the left if a < 0. (See Figure A.5.) This time the
parabola is symmetric with respect to the x-axis because if (x, y) satisfies
x = ay2, then so does (x, −y).
The graph of an equation is symmetric with respect to the x-axis if the
equation is unchanged when y is replaced by −y.

A.3 Ellipses

The curve with equation:

x2

a2 + y2

b2 = 1

where a and b are positive numbers, is called an ellipse in standard
position. Equation above is unchanged if x is replaced by −x or y is
replaced by −y, so the ellipse is symmetric with respect to both axes. As
a further aid to sketching the ellipse, we find its intercepts.
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Figure A.4: different parabolas

Figure A.5: different parabolas

The x-intercepts of a graph are the x-coordinates of the points where
the graph intersects the x-axis. They are found by setting y = 0 in the
equation of the graph.
The y-intercepts are the y-coordinates of the points where the graph
intersects the y-axis. They are found by setting x = 0 in its equation.
If we set y = 0 in the equation of ellipse, we get x2 = a2 and so the
x-intercepts are ±a. Setting x = 0, we get y2 = b2, so the y-intercepts
are ±b. Using this information, together with symmetry, we sketch the
ellipse in Figure A.6 . If a = b, the ellipse is a circle with radius a.

Figure A.6: Ellipse with equation x2

a2 + y2

b2 = 1
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A.4 Hyperbolas

The curve with equation

x2

a2 − y2

b2 = 1

is called a hyperbola in standard position. Again, Equation above is
unchanged when x is replaced by −x or y is replaced by −y, so the
hyperbola is symmetric with respect to both axes. To find the x-intercepts
we set y = 0 and obtain x2 = a2 and x = ±a. However, if we put x = 0
in above equation, we get y2 = −b2, which is impossible, so there is no
y-intercept. In fact, we obtain:

x2

a2 = 1 + y2

b2 ⩾ 1

which shows that x2 ⩾ a2 and so |x| =
√

x2 ⩾ a. Therefore we have x ⩾ a
or x ⩽ −a. This means that the hyperbola consists of two parts, called
its branches. It is sketched in Figure A.7.

Figure A.7: Hyperbola with equation x2

a2 − y2

b2 = 1

In drawing a hyperbola it is useful to draw first its asymptotes, which
are the lines y = (b/a)x and y = −(b/a)x shown in Figure A.7. Both
branches of the hyperbola approach the asymptotes; that is, they come
arbitrarily close to the asymptotes.
By interchanging the roles of x and y we get an equation of the form

y2

a2 − x2

b2 = 1

which also represents a hyperbola and is sketched in Figure A.8:
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Figure A.8: Hyperbola with equation x2

a2 − y2

b2 = 1

A.5 Angles

Angles can be measured in degrees or in radians (abbreviated as rad).
The angle given by a complete revolution contains 360◦, which is the same
as 2π rad. Therefore:

π rad = 180◦

and

1rad =
(

180
π

)◦

≈ 57.3◦ 1◦ = π

180rad ≈ 0.017rad

Example 1
(a) Find the radian measure of 60◦. (b) Express 5π/4 rad in degrees.
Solution
(a) From Equation 1 or 2 we see that to convert from degrees to radians
we multiply by π/180. Therefore

60◦ = 60
( π

180

)
= π

3 rad

(b) To convert from radians to degrees we multiply by 180/π. Thus

5π

4 rad = 5π

4

(
180
π

)
= 225◦

In calculus we use radians to measure angles except when otherwise
indicated. The following table gives the correspondence between degree
and radian measures of some common angles.

Degrees 0◦ 30◦ 45◦ 60◦ 90◦ 120◦ 135◦ 150◦ 180◦ 270◦ 360◦

Radians 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π 3π

2 2π
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Figure A.9: Sector of a circle with central angle θ

Figure A.9 shows a sector of a circle with central angle θ and radius r
subtending an arc with length a. Since the length of the arc is proportional
to the size of the angle, and since the entire circle has circumference 2πr
and central angle 2π, we have:

θ

2π
= a

2πr

Solving this equation for θ and for a, we obtain:

θ = a

r
a = rθ

Remember that above equations are valid only when θ is measured in
radians.

In particular, putting a = r in above equation, we see that an angle of
1 rad is the angle subtended at the center of a circle by an arc equal in
length to the radius of the circle (see Figure A.10).

Figure A.10: Sector of a circle with its radius equal to the arc

The standard position of an angle occurs when we place its vertex at
the origin of a coordinate system and its initial side on the positive x-axis
as in Figure A.11 . A positive angle is obtained by rotating the initial
side counterclockwise until it coincides with the terminal side. Likewise,
negative angles are obtained by clockwise rotation as in Figure A.11.
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Figure A.11: Positive and negative angles

Figure A.12 shows several examples of angles in standard position. Notice
that different angles can have the same terminal side. For instance, the
angles 3π/4, −5π/4, and 11π/4 have the same initial and terminal sides
because:

3π

4 − 2π = −5π

4
3π

4 + 2π = 11π

4

and 2πrad represents a complete revolution.

Figure A.12: Angles in standard position

A.6 Trigonometric Identities

Pythagorean Identities

sin2 x + cos2 x = 1
tan2 x + 1 = sec2 x

1 + cot2 x = csc2 x

Sum and Difference Formulas

sin(x ± y) = sin x cos y ± cos x sin y

cos(x ± y) = cos x cos y ∓ sin x sin y

tan(x ± y) = tan x ± tan y

1 ∓ tan x tan y

Double-Angle Formulas

sin 2x = 2 sin x cos x

cos 2x = cos2 x − sin2 x
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= 2 cos2 x − 1
= 1 − 2 sin2 x

tan 2x = 2 tan x

1 − tan2 x

Half-Angle Formulas

sin x

2 = ±
√

1 − cos x

2

cos x

2 = ±
√

1 + cos x

2

tan x

2 = sin x

1 + cos x

A.7 Polar Coordinates

In polar coordinates, a point in the plane is represented by an ordered
pair (r, θ), where r is the distance from the origin to the point and θ is
the angle between the positive x-axis and the line segment connecting the
origin to the point, measured counterclockwise.

Conversion from Cartesian to Polar Coordinates

Given a point (x, y) in Cartesian coordinates, we can convert to polar
coordinates as follows:

r =
√

x2 + y2

θ = tan−1
( y

x

)
Note that the angle θ must be adjusted to lie in the appropriate quadrant.

Conversion from Polar to Cartesian Coordinates

Given a point (r, θ) in polar coordinates, we can convert to Cartesian
coordinates as follows:

x = r cos θ

y = r sin θ

Position Vector

The position vector in polar coordinates is given by

r = rr̂
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where r̂ is the unit vector in the radial direction, given by

r̂ =
(
cos θ, sin θ

)
Velocity Vector

To derive the velocity vector in polar coordinates, we differentiate the
position vector with respect to time:

v = dr
dt

= d

dt
(rr̂) = ṙr̂ + r

dr̂

dt

The time derivative of the unit vector r̂ can be found using the chain rule:

dr̂

dt
= d

dt

(
cos θ, sin θ

)
=

(
− sin θ, cos θ

) dθ

dt
=

(
− sin θ, cos θ

)
θ̇

Substituting this expression into the velocity vector equation, we get

v = ṙr̂ + rθ̇θ̂

where θ̂ is the unit vector in the tangential direction, given by

θ̂ =
(
− sin θ, cos θ

)
Acceleration Vector

To derive the acceleration vector in polar coordinates, we differentiate the
velocity vector with respect to time:

a = dv

dt
= (r̈ − rθ̇2)r̂ + (rθ̈ + 2ṙθ̇)θ̂

where r̈ = d2r
dt2 and θ̈ = d2θ

dt2 are the second derivatives of r and θ,
respectively.
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